Nutritional Strategies: Hard Bones, Soft Arteries, Rather Than Vice Versa
ABSTRACT
Nutritional Strategies: The focus of this paper is to explore better strategies for optimizing bone strength and reducing risk of fracture, while at the same time decreasing risk of cardiovascular disease. The majority of Americans do not consume the current recommended dietary allowance for calcium, and the lifetime risk of osteoporosis is about 50%. However, traditional mono-nutrient calcium supplements may not be ideal. We comprehensively and systematically reviewed the scientific literature in order to determine the optimal dietary nutritional strategies and nutritional supplements for long- term skeletal health and cardiovascular health. To summarize, the following steps may be helpful for building strong bones while maintaining soft and supple arteries: (1) calcium is best obtained from dietary sources rather than supplements; (2) ensure that adequate animal protein intake is coupled with calcium intake of 1000 mg/day; (3) maintain vitamin D levels in the normal range; (4) increase intake of fruits and vegetables to alkalinize the system and promote bone health; (5) concomitantly increase potassium consumption while reducing sodium intake; (6) consider increasing the intake of foods rich in vitamins K1 and K2; (7) consider including bones in the diet; they are a rich source of calcium-hydroxyapatite and many other nutrients needed for building bone.
Table of Contents
INTRODUCTION: Nutritional Strategies
Calcium: General Physiology Andepidemiology
Calcium is the most ubiquitous mineral in the human body. An average-sized adult body contains approximately 1000 to 1200 g of calcium, which is predominately incorporated into bones and teeth in the form of calcium-hydroxyapatite (Ca10(PO4)6(OH)2) crystals. The remainder circulates throughout the blood and soft tissues, and plays fundamental roles in cell conduction, muscle function, hormone regulation, vitamin (Vit) K-dependent pathways, and cardiac and blood vessel function.1
Some studies indicate only 30% of the US population consumes the Recommended Dietary Allowance of calcium, which is 1000– 1200 mg daily.1 Furthermore, humans absorb only about 30% of calcium from foods depend- ing on the specific source.1 The body will demineralize its own skeletal system to maintain serum calcium levels in situations where dietary calcium is insufficient and/or absorption is decreased, and/or excretion is increased.2
Osteopenia/Osteoporosis: An Epidemic
Starting at about age 50 years, postmenopausal women lose about 0.7–2% of their bone mass each year, while men over age 50 years lose 0.5–0.7% yearly. Between ages 45 and 75years, women, on average, lose 30% of their bone mass, whereas men lose 15%.
According to the US Surgeon General’s Report, 1 in 2 Americans over age 50 years is expected to have or to be at risk of develop- ing osteoporosis.3 Osteoporosis causes 8.9 million fractures annually, with an estimated cumulative cost of incident fractures predicted at US$474 billion over the next 20 years in the USA.3–6 Among adult women over age 45 years, osteoporosis accounts for more days spent in hospital than many other diseases such as diabetes, myocardial infarction (MI), chronic obstructive airway disease and breast cancer.3 Fragility fractures are the primary cause of hospitalization and/or death for US adults ? age 65 years and older; and 44% of nursing home admissions are due to fractures.3
A Mayo Clinic study reported that compared to 30 years ago, forearm fractures have risen more than 32% in boys and 56% in girls. The authors concluded that dietary changes, including insufficient calcium and excess phosphate, were significantly associated with increased fractures.7 Public health approaches are crucial to prevent symptomatic bone disease, but widespread pharmacological prophylaxis is prohibitively expensive and carries potential serious adverse effects.
Cardiovascular Disease & Bone Mineral Disease: A Calcium Nexus
Strong epidemiological associations exist between decreased bone mineral density (BMD) and increased risk of both cardiovascular (CV) disease and CV death.8 For example, individuals with osteoporosis have a higher risk of coronary artery disease, and vice versa. This problem will be magnified if the therapies for osteoporosis (eg, calcium supplements) independently increase risk of MI.
Issues With Dairy As Primary Source Of Calcium
Dairy foods and beverages account for about 70% of all dietary calcium intake among Americans. Dozens of epidemiological and randomized controlled trials in adults and children have used dairy products as the principal source of calcium, and have credited dairy intake with preventive benefits on study end points including bone mass, fractures and osteoporosis. A recent meta-analysis of over 270 000 people showed a strong trend for dairy intake protecting against hip fracture; the relative risk (RR) of hip fracture per daily glass of milk was 0.91, 95% CI 0.81 to 1.01.9
In many industrialized nations, milk is often the most cost-effective strategy for achieving recommended levels of calcium intake at a population level. Yet, legitimate concerns exist regarding potential deleterious effects of chronic dairy intake on health.10–16 Dairy foods, on an evolutionary time scale, are relative ‘new-comers’ to the hominin diet.17 Domestication of cattle, sheep and goats first occurred approximately 11 000–10 000 years Before Present.17 Furthermore, it appears that an estimated 65% of the worldwide population expresses the phenotype of lactase non-persistence.18
Consumption of cow’s milk has been inconsistently associated with cataracts, ovarian and prostate cancers, and Parkinson’s disease, and it has been implicated in certain autoimmune diseases, such as type 1 diabetes and multiple sclerosis. Overall, the evidence for dairy-induced human disease appears to be most consistent for prostate cancer and for type 1 diabetes.19
A recent study of over 106 000 adults followed for 20 years showed that drinking three or more glasses of milk per day was associated with increased risks for bone fracture and higher mortality rates compared with drink- ing not more than one glass of milk per day.20 By contrast, for the women in that study, each daily serving of cheese and/or other fermented milk products such as yogurt was associated with a 10–15% decrease in the rates of mortality and hip fractures (p<0.001). However, this was an observational study with inherent limitations such as residual confounding and reverse causation, and thus, firm conclusions cannot be drawn from the data.
The sugar in milk, lactose, is broken down in the gastrointestinal tract to d-galactose and d-glucose. d-Galactose has been found to increase inflammation and oxidation in adult humans, and in adult animals this sugar triggers accelerated aging, neurodegeneration, and a shortened life span.20
Thus, cow’s milk, though rich in many nutrients, including calcium, has issues that render it less than ideal as a dietary staple for many adults. On the contrary, fermented dairy foods, such as yogurt and cheese, appear to be safer than milk, possibly because the most or all of d-galactose has been metabolized by bacteria.20
Plant-Based Dietary Sources Of Calcium & Protein: Effects On Bone Health
Most vegetarians, especially vegans, appear to absorb less calcium because of the oxalic and phytic acid contained in many plant, grain and legume products.1 Indeed, several studies have reported that risks of bone fracture are higher in vegans—likely due, at least in part, to their lower dietary calcium intake, and/or poor absorption of this key mineral (table 1).21
Dietary Protein, Calcium And Bone Health
Evolutionary evidence suggests that preagricultural diets were net base-yielding, and contributed to the robust bone health generally seen among hunter-gatherers.10 17 By contrast, processed foods displace base-yielding fruits and vegetables, thereby shifting to a net acid-yielding diet.2 22–24
Increased protein intake can raise levels of insulin-like growth factor 1, which is anabolic, and contributes to bone building. Experts currently agree that diets moderate in protein (?1.0–1.5 g/kg/day) are associated with normal calcium metabolism, and do not adversely alter bone metabolism; however, at lower protein intakes (<0.8 g/kg/day), intestinal calcium absorption is reduced and levels of parathyroid hormone rise, causing the mobilization of calcium from bone.25 26
A growing body of evidence indicates that diets higher in animal protein associate with greater bone mass and fewer fractures, particularly if the calcium intake is also sufficient (approximately 1000 mg of calcium/day) (figure 1).26–28 Thus, a diet providing ample dietary calcium, along with alkalizing nutrients, such as fruits and vegetables, and possibly also alkaline mineral waters, may create a milieu where moderate intake of animal protein contributes favorably to bone health. Additionally, intake of protein plus calcium with Vitamin D may reduce fracture rates through mechanisms independent of bone density.29
Magnesium
Maintaining replete magnesium status may reduce risk for the metabolic syndrome, diabetes, hypertension and MI.30 Circumstantial and experimental evidence has also implicated magnesium deficiency in osteoporosis.31–34 Optimal dietary magnesium intake is about 7–10 mg/ kg/day, preferably in the context of a net base-yielding diet, since a net acid-yielding diet increases excretion of both magnesium and calcium (table 2).
Potassium/Sodium Ratio Affects Calcium Metabolism
A potassium/sodium ratio of 1.0 or higher is associated with a 50% lower risk of CVD and total mortality com- pared with a ratio under 1.0.35 Reducing excessive sodium intake is also associated with resultant decreased urinary calcium excretion, which may help to prevent against bone demineralization.36 The average potassium content (about 2600 mg/day) of the typical US diet is substantially lower than its sodium content (about 3300 mg/day).35 Approximately 77% of dietary sodium chloride is consumed in the form of processed foods. By contrast, potassium is naturally abundant in many unprocessed foods, especially vegetables, fruits, tubers, nuts, legumes, fish and seafood. In fact, a high potassium/sodium ratio is a reliable marker for high intake of plant foods and lower intake of processed foods.35 High dietary sodium intake has been associated with endothelial damage, arterial stiffness, decreased nitric oxide production and increased levels of transforming growth factor ?; whereas, high potassium dietary intake can counteract these effects.35 36
Evidence indicates that the lowest CV event rates occur in the moderate sodium excretion and high potassium excretion groups.37 Thus, it appears that a moderate sodium diet (2800–3300 mg/day) in conjunction with a high potassium intake (>3000 mg/day) might confer the optimal CV benefits for the general population.37
Vitamin K & Bone Health
Emerging evidence suggests that Vitamin K may confer protective effects for both the skeletal and CV systems. Vitamin K operates in the context of other fat-soluble vitamins, such as A and D, all of which are involved in maintenance of serum calcium concentration, along with the manipulation of materials leading to bone morphogenesis and maintenance of bone tissue.38 Specifically, the oxidation of Vitamin K results in activation/carboxylation of matrix Gla protein (MGP) which is partially responsible for mineralizing bone.39
Also, Vit K is required for the activation (?-carboxylation) of osteocalcin; the inactivated form, or per cent of undercaboxylated-osteocalcin (%ucOC), has been found to be a sensitive indicator of Vitamin K nutrition status.38 In cross-sectional and prospective analyses, elevated %ucOC, which occurs when Vitamin K status is low, is a marker of increased risk for hip fracture in the elderly.38
Several large observational studies appear to support the benefits of Vitamin K on bone health.38 A meta-analysis concluded that while supplementation with phytonadione (Vitamin K1) improved bone health, Vitamin K2 was even more effective in this regard.40 This large and statistically rigorous meta-analysis concluded that high Vitamin K2 levels were associated with reduced vertebral fractures by approximately 60% (95% CI 0.25% to 0.65%), hip fractures by 77% (95% CI 0.12% to 0.47%), and all non- vertebral fractures by approximately 81% (95% CI 0.11% to 0.35%). Moreover, the benefit of Vitamin K on bone may not be due to its ability to increase BMD, but rather to its effects at increasing bone strength.41
Vitamin K Benefits In CV Health
Mounting evidence suggests vascular calcification whether in the coronary or peripheral arteries is a powerful predictor of CV morbidity and all-cause mortal- ity.42 Prevention of vascular calcification is therefore important as an early intervention to potentially improve long-term CV prognosis.
A major calcification inhibitory factor, is a Vitamin K-dependent protein synthesized by vascular smooth muscle cells.42 Increased Vitamin K2 intake has been associated with decreased arterial calcium deposition and the ability to reverse vascular calcification in animal models. Vitamin K2 prevents pathological calcification in soft tissues via the carboxylation of protective MGP. The undercarboxylated (inactive) species of MGP is formed during inadequate Vitamin K status, or as a result of Vitamin K antagonists.42 Low Vitamin K status is associated with increased vascular calcifications, and can be improved by effective Vitamin K supplementation (table 3).43 44 In two different randomized, double-blind controlled trials, supplemental Vitamin K has been shown to significantly delay both the development of coronary artery calcification and the deterioration of arterial elasticity.45 46
Dietary Vitamin K exists as two major forms: phylloquinone (K1) and menaquinones (MK-n). K1, the predominant dietary form of Vitamin K, is abundant in dark-green leafy vegetables and seeds. The main dietary sources for MK-n in Western populations are fermented foods, especially natto, cheese and curds (mainly MK-8 and MK-9).47
Calcium Supplementation & Bone Health
A recent large meta-analysis of 26 randomized controlled trials reported that calcium supplements lowered the risk of any fracture by a modest but statistically significant 11% (n=58 573; RR 0.89, 95% CI 0.81 to 0.96).48 Even so, the authors concluded that the evidence for calcium supplements on bone health was weak and inconsistent.
Other large meta-analyses found that calcium supplementation was most effective for preventing hip fractures when it was combined with Vitamin D.49–51 Indeed Vitamin D plays a major role in intestinal calcium absorption and bone health (figure 2).52 Additionally, calcium absorption is, in part, dependent on adequate stomach acid, and both these parameters tend to decrease with age. Drugs that markedly reduce stomach acid, such as proton pump inhibitors, have been shown to reduce calcium absorption and increase risk of osteoporosis and fractures.53
A large meta-analysis focusing on calcium intake and fracture risk found that in women (seven prospective cohort studies=170 991 women, 2954 hip fractures), there was no association between total calcium intake and hip fracture risk (pooled RR per 300 mg total=1.01; 95% CI 0.97 to 1.05).50 In men (five prospective cohort studies= 68 606 men, 214 hip fractures), the pooled RR per 300 mg of calcium daily was 0.92 (95% CI 0.82 to 1.03).
Monosupplementation with calcium, especially using the most commonly prescribed formulations (calcium carbonate and calcium citrate) might drive down the absorption of phosphate, thereby contributing to bone demineralization secondary to abnormal calcium to phosphate ratios.54 The recently updated US Preventive Services Task Force (USPSTF) has stated that there is insufficient evidence that calcium and Vitamin D prevent fractures in premenopausal women or in men who have not experienced a prior fracture. Indeed, the USPSTF now recommends against daily calcium supplementation for primary prevention of fragility fractures; stating, ‘the balance of benefits and harms cannot be determined’.55
Calcium Supplementation & Arterial Health
The Women’s Health Initiative, a 7-year, placebo- controlled randomized trial involving 36 282 participants, found that calcium supplementation with Vitamin D (1000 mg/400 IU daily) had a neutral effect on coronary risk and cerebrovascular risk.56 By contrast, some subsequent publications have reported data challenging the CV safety of calcium supplementation.57–60
One meta-analysis of placebo-controlled trials involving 28 000 participants reported that a daily calcium supplement was associated with an increased risk of MI (HR 1.24, 95% CI 1.07 to 1.45, p=0.004).58 A prospective study of 388229 men and women with a 12-year follow-up showed that calcium supplementation was associated with elevated risk of heart disease death in men, but not in women.61 Yet, only one randomized controlled trial of calcium supplementation using adverse cardiac events as the primary end point has been published. In that study, daily supplementation using 1200 mg of calcium carbonate did not increase the risk of CV death or hospitalization for 1460 women (mean age 75 years).62
In a prospective cohort study with a mean follow-up of 19 years, both high and low dietary calcium intakes were associated with increased CV disease and higher all-cause mortality (figure 3).51 Importantly, a low dietary calcium intake with or without calcium supplementation is also associated with higher CV morbidity and mortality rates.51
Other possible mechanisms that have linked calcium supplements with CV disease include coronary artery calcification, impaired vasodilation, increased arterial stiffness, and hypercoagulability.51 66
Nutritional Strategies: Food As The Ideal Source Of Calcium
The traditional focus in nutritional strategies based on supplementation of single isolated nutrients may be especially mis- guided in the case of calcium and bone health. A diet supplemented with calcium as a mononutrient pill is not ideal for promoting bone health, and may instead accelerate arterial plaque growth and vascular calcification, and increase risk of MI. Food-based solutions place evidence-based emphasis on finding the admixture of foods that balance the acid–base status of the body, and that most favorably impact the body’s calcium metabolism and bone health.
A plant-rich, grain-free diet alters the acid–base status so as to be slightly alkaline, which is conducive for bone health. However, plants are relatively poor sources of calcium compared to animal sources such as dairy pro- ducts and animal bones. We suspect that milk, though an excellent source of bioavailable calcium, has potential adverse health effects for some individuals. Additionally, 65% of the world’s population show some decrease in lactase activity during adulthood. Importantly, fermented dairy has been linked to favorable outcomes for bone health and mortality risk.
Benefits Of Consuming Bones Or Bone Meal
Ethnographic and anthropological studies indicate that adult human hunter-gatherers consumed most of their calcium in the form of bones from animals, such as small and large mammals, birds, fish and reptiles.67 68 Indeed through millions of years of evolution, we are genetically adapted to consume a large proportion of our dietary calcium from bones, where calcium is absorbed along with a matrix of nutrients including magnesium, phosphorus, strontium, zinc, iron, copper, collagen protein, aminoglycans and osteocalcin—all of which also support robust bone formation.68 69 Theoretically, including animal bones (sardines, salmon, soft chicken bones, bone broths, etc) may be an effective dietary strategy to ensure adequate calcium intake and to optimize long-term bone health.
Mineral supplements made from bone meal, when taken with food, theoretically might provide a more practical means to ensure adequate calcium intake without predisposing to CVD risk. Ingestion of micro- crystalline hydroxyapatite (the form of calcium found in bone) produces less of an acute spike in blood calcium levels compared to soluble calcium salts typically used in standard supplements, and thus may be less likely to increase vascular calcification and coronary risk.65 Hydroxyapatite also stimulates bone osteoblast cells and contains virtually all the essential building blocks needed to construct bone tissue. In a small placebo- controlled randomized trial, women who took 1000 mg of calcium in the form of hydroxyapatite in conjunction with oral Vitamin D showed a significant increase in bone thickness, whereas those who took 1000 mg of a standard calcium carbonate supplement did not (figure 4).70 Another double-blind placebo-controlled study found that supplementing with hydroxyapatite and Vitamin D3 significantly improved serological markers of bone health.15
In theory, the addition of Vitamin K2 and magnesium to an organic bone meal supplement might further enhance its effectiveness and reduce the risk of soft tissue calcification. However, the quantity and quality of the experimental data testing the effects of Vitamin D and calcium on bone health dwarfs the data for bone meal supplementation. Much larger randomized trials will be needed to firmly establish the safety and effectiveness of bone meal as well as Vitamin K and magnesium as supplements for building bone without increasing vascular calcification.
Conclusion: Nutritional Strategies
It is becoming increasingly clear that the fundamental unit for nutrition is the food (eg, milk, nuts, eggs), not the nutrient (eg, calcium, saturated fat, cholesterol). A nutrient perceived as beneficial, such as calcium, may be unhealthy if the parent food, say milk, contains other nutrients, such as galactose, that on the balance might stimulate adverse effects in the body. In theory, consuming calcium-rich foods such as bones, fermented dairy (eg, unsweetened yogurt, kefir, cheese), leafy greens, almonds, and chia seeds may be an effective strategy for improving both calcium intake and long-term health.
James H O’Keefe,1 Nathaniel Bergman,2 Pedro Carrera-Bastos,3 Mae?lan Fontes-Villalba,3 James J DiNicolantonio,1 Loren Cordain4
Twitter Follow Maela?n Fontes-Villalba at @maelanfontes
Contributors NB, PC-B and MF-V assisted with the gathering and review of the data; JD, LC and JHO reviewed the data; NB, PC-B, MF-V, JD, LC and JHO assisted in the concept and design of the manuscript. JHO, NB and PC-B wrote, rewrote and finalised the manuscript.
Funding This manuscript received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. This paper was not commissioned.
Competing interests JHO is Chief Medical Officer and has an ownership interest in CardioTabs, a nutraceutical company that markets products containing vitamins and minerals.
Provenance and peer review Not commissioned; externally peer reviewed.
Data sharing statement No additional data are available.
Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non- commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http:// creativecommons.org/licenses/by-nc/4.0/
1. Ross AC, Taylor CL, Yaktine AL, del Valle HB, eds. Dietary
Reference Intakes for Calcium and Vitamin D. Washington DC: The
National Academies Press, 2011:349. www.ncbi.nlm.nih.gov/
books/NBK56070/
2. Frassetto L, Morris RC Jr, Sellmeyer DE, et al. Diet, evolution and
aging—the pathophysiologic effects of the post-agricultural inversion
of the potassium-to-sodium and base-to-chloride ratios in the human
diet. Eur J Nutr 2001;40:200–13.
3. Surgeons AAoO. The burden of musculoskeletal diseases in the
United States: prevalence, societal and economic cost. Rosemont,
IL: Amer Academy of Orthopaedic, 2008.
4. Johnell O, Kanis JA. An estimate of the worldwide prevalence and
disability associated with osteoporotic fractures. Osteoporos Int
2006;17:1726–33.
5. Facts and Statistics. www.iofbonehealth.org/facts-statistics.
Secondary Facts and Statistics. www.iofbonehealth.org/
facts-statistics. 2013. www.iofbonehealth.org/facts-statistics
6. Burge R, Dawson-Hughes B, Solomon DH, et al. Incidence and
economic burden of osteoporosis-related fractures in the United
States, 2005–2025. J Bone Miner Res 2007;22:465–75.
7. Khosla S, Melton LJ III, Dekutoski MB, et al. Incidence of childhood
distal forearm fractures over 30 years: a population-based study.
JAMA 2003;290:1479–85.
8. Choi SH, An JH, Lim S, et al. Lower bone mineral density is
associated with higher coronary calcification and coronary plaque
burdens by multidetector row coronary computed tomography
in pre- and postmenopausal women. Clin Endocrinol
2009;71:644–51.
9. Bischoff-Ferrari HA, Dawson-Hughes B, Baron JA, et al. Milk intake
and risk of hip fracture in men and women: a meta-analysis of
prospective cohort studies. J Bone Miner Res 2011;26:833–9.
10. Carrera-Bastos P, Fontes-Villaba M, O’Keefe JH, et al. The western
diet and lifestyle and diseases of civilization. Res Rep Clin Cardio
2011;2011:15–35.
11. Winer S, Astsaturov I, Cheung RK, et al. T cells of multiple sclerosis
patients target a common environmental peptide that causes
encephalitis in mice. J Immunol 2001;166:4751–6.
12. Artaud-Wild SM, Connor SL, Sexton G, et al. Differences in coronary
mortality can be explained by differences in cholesterol and
saturated fat intakes in 40 countries but not in France and Finland.
A paradox. Circulation 1993;88:2771–9.
13. Segall JJ. Plausibility of dietary lactose as a coronary risk factor.
J Nutr Enviro Med 2002;12:217–29.
14. Cordain L, Toohey L, Smith MJ, et al. Modulation of immune
function by dietary lectins in rheumatoid arthritis. Br J Nutr
2000;83:207–17.
15. Disilvestro RA, Crawford B, Zhang W, et al. Effects of micronutrient
supplementation plus resistance exercise training on bone
metabolism markers in young adult woman. J Nutr Enviro Med
2007;16:16–25.
16. Sandler RB, Slemenda CW, LaPorte RE, et al. Postmenopausal
bone density and milk consumption in childhood and adolescence.
Am J Clin Nutr 1985;42:270–4.
17. Cordain L, Eaton SB, Sebastian A, et al. Origins and evolution of the
Western diet: health implications for the 21st century. Am J Clin Nutr
2005;81:341–54.
18. Ingram CJ, Mulcare CA, Itan Y, et al. Lactose digestion and the
evolutionary genetics of lactase persistence. Hum Genet
2009;124:579–91.
19. Melnik BC, John SM, Carrera-Bastos P, et al. The impact of cow’s
milk-mediated mTORC1-signaling in the initiation and progression of
prostate cancer. Nutr Metab 2012;9:74.
20. Michaelsson K, Wolk A, Langenskiold S, et al. Milk intake and risk of
mortality and fractures in women and men: cohort studies. BMJ
2014;349:g6015.
21. Appleby P, Roddam A, Allen N, et al. Comparative fracture risk in
vegetarians and nonvegetarians in EPIC-Oxford. Eur J Clin Nutr
2007;61:1400–6.
22. Sebastian A, Harris ST, Ottaway JH, et al. Improved mineral balance
and skeletal metabolism in postmenopausal women treated with
potassium bicarbonate. N Engl J Med 1994;330:1776–81.
23. Bushinsky DA. Metabolic alkalosis decreases bone calcium efflux by
suppressing osteoclasts and stimulating osteoblasts. Am J Physiol
1996;271(1 Pt 2):F216–22.
24. Sebastian A, Frassetto LA, Sellmeyer DE, et al. Estimation of
the net acid load of the diet of ancestral preagricultural Homo
sapiens and their hominid ancestors. Am J Clin Nutr
2002;76:1308–16.
25. Kerstetter JE, O’Brien KO, Insogna KL. Dietary protein, calcium
metabolism, and skeletal homeostasis revisited. Am J Clin Nutr
2003;78(3 Suppl):584S–92S.
26. Heaney RP, Layman DK. Amount and type of protein influences
bone health. Am J Clin Nutr 2008;87:1567S–70S.
27. Hannan MT, Tucker KL, Dawson-Hughes B, et al. Effect of dietary
protein on bone loss in elderly men and women: the Framingham
Osteoporosis Study. J Bone Miner Res 2000;15:2504–12.
28. Sahni S, Cupples LA, McLean RR, et al. Protective effect of high
protein and calcium intake on the risk of hip fracture in the
Framingham offspring cohort. J Bone Miner Res 2010;25:
2770–6.
29. Rabenda V, Bruyere O, Reginster JY. Relationship between bone
mineral density changes and risk of fractures among patients
receiving calcium with or without vitamin D supplementation:
a meta-regression. Osteoporos Int 2011;22:893–901.
30. He K, Liu K, Daviglus ML, et al. Magnesium intake and incidence of
metabolic syndrome among young adults. Circulation
2006;113:1675–82.
31. Lakshmanan FL, Rao RB, Kim WW, et al. Magnesium intakes,
balances, and blood levels of adults consuming self-selected diets.
Am J Clin Nutr 1984;40(6 Suppl):1380–9.
32. Greger JL, Baligar P, Abernathy RP, et al. Calcium, magnesium,
phosphorus, copper, and manganese balance in adolescent
females. Am J Clin Nutr 1978;31:117–21.
33. Gullestad L, Nes M, Ronneberg R, et al. Magnesium status in
healthy free-living elderly Norwegians. J Am Coll Nutr
1994;13:45–50.
34. Sojka JE, Weaver CM. Magnesium supplementation and
osteoporosis. Nutr Rev 1995;53:71–4.
35. Yang Q, Liu T, Kuklina EV, et al. Sodium and potassium intake and
mortality among US adults: prospective data from the Third National
Health and Nutrition Examination Survey. Arch Intern Med
2011;171:1183–91.
36. Lin PH, Ginty F, Appel LJ, et al. The DASH diet and sodium
reduction improve markers of bone turnover and calcium metabolism
in adults. J Nutr 2003;133:3130–6.
37. O’Donnell MJ, Yusuf S, Mente A, et al. Urinary sodium and
potassium excretion and risk of cardiovascular events. JAMA
2011;306:2229–38.
38. Booth SL. Roles for vitamin K beyond coagulation. Annu Rev Nutr
2009;29:89–110.
39. Kanellakis S, Moschonis G, Tenta R, et al. Changes in parameters
of bone metabolism in postmenopausal women following a
12-month intervention period using dairy products enriched with
calcium, vitamin D, and phylloquinone (vitamin K(1)) or
menaquinone-7 (vitamin K (2)): the Postmenopausal Health Study II.
Calcif Tissue Int 2012;90:251–62.
40. Cockayne S, Adamson J, Lanham-New S, et al. Vitamin K and the
prevention of fractures: systematic review and meta-analysis of
randomized controlled trials. Arch Intern Med 2006;166:1256–61.
41. Knapen MH, Schurgers LJ, Vermeer C. Vitamin K2 supplementation
improves hip bone geometry and bone strength indices in
postmenopausal women. Osteoporos Int 2007;18:963–72.
42. Beulens JW, Bots ML, Atsma F, et al. High dietary menaquinone
intake is associated with reduced coronary calcification.
Atherosclerosis 2009;203:489–93.
43. Rennenberg RJ, de Leeuw PW, Kessels AG, et al. Calcium scores
and matrix Gla protein levels: association with vitamin K status. Eur
J Clin Invest 2010;40:344–9.
44. Schurgers LJ, Barreto DV, Barreto FC, et al. The circulating inactive
form of matrix gla protein is a surrogate marker for vascular
calcification in chronic kidney disease: a preliminary report. Clin J
Am Soc Nephrol 2010;5:568–75.45. Shea MK, O’Donnell CJ, Hoffmann U, et al. Vitamin K
supplementation and progression of coronary artery calcium in older
men and women. Am J Clin Nutr 2009;89:1799–807.
46. Braam LA, Hoeks AP, Brouns F, et al. Beneficial effects of vitamins
D and K on the elastic properties of the vessel wall in
postmenopausal women: a follow-up study. Thromb Haemost
2004;91:373–80.
47. McCann JC, Ames BN. Vitamin K, an example of triage theory: is
micronutrient inadequacy linked to diseases of aging? Am J Clin
Nutr 2009;90:889–907.
48. Bolland MJ, Leung W, Tai V, et al. Calcium intake and risk of
fracture: systematic review. BMJ 2015;351:h4580.
49. Tang BM, Eslick GD, Nowson C, et al. Use of calcium or calcium in
combination with vitamin D supplementation to prevent fractures and
bone loss in people aged 50 years and older: a meta-analysis.
Lancet 2007;370:657–66.
50. Bischoff-Ferrari HA, Dawson-Hughes B, Baron JA, et al. Calcium
intake and hip fracture risk in men and women: a meta-analysis of
prospective cohort studies and randomized controlled trials. Am J
Clin Nutr 2007;86:1780–90.
51. Michaelsson K, Melhus H, Warensjo Lemming E, et al. Long term
calcium intake and rates of all cause and cardiovascular mortality:
community based prospective longitudinal cohort study. BMJ
2013;346:f228.
52. Christakos S. Recent advances in our understanding of
1,25-dihydroxyvitamin D(3) regulation of intestinal calcium
absorption. Arch Biochem Biophys 2012;523:73–6.
53. Khalili H, Huang ES, Jacobson BC, et al. Use of proton pump
inhibitors and risk of hip fracture in relation to dietary and lifestyle
factors: a prospective cohort study. BMJ 2012;344:e372.
54. Heaney RP, Nordin BE. Calcium effects on phosphorus absorption:
implications for the prevention and co-therapy of osteoporosis. J Am
Coll Nutr 2002;21:239–44.
55. Moyer VA. Vitamin D and calcium supplementation to prevent
fractures in adults: U.S. Preventive Services Task Force
recommendation statement. Ann Intern Med 2013;158:691–6.
56. Hsia J, Heiss G, Ren H, et al. Calcium/vitamin D supplementation
and cardiovascular events. Circulation 2007;115:846–54.
57. Bolland MJ, Barber PA, Doughty RN, et al. Vascular events in
healthy older women receiving calcium supplementation:
randomised controlled trial. BMJ 2008;336:262–6.
58. Bolland MJ, Wang TK, van Pelt NC, et al. Abdominal aortic
calcification on vertebral morphometry images predicts incident
myocardial infarction. J Bone Miner Res 2010;25:505–12.
59. Reid IR, Bolland MJ, Grey A. Does calcium supplementation
increase cardiovascular risk? Clin Endocrinol 2010;73:689–95.
60. Pentti K, Tuppurainen MT, Honkanen R, et al. Use of calcium
supplements and the risk of coronary heart disease in 52–
62-year-old women: The Kuopio Osteoporosis Risk Factor and
Prevention Study. Maturitas 2009;63:73–8.
61. Xiao Q, Murphy RA, Houston DK, et al. Dietary and supplemental
calcium intake and cardiovascular disease mortality: The National
Institutes of Health-AARP diet and health study. JAMA Intern Med
2013;173:639–46.
62. Lewis JR, Calver J, Zhu K, et al. Calcium supplementation and the
risks of atherosclerotic vascular disease in older women: results of a
5-year RCT and a 4.5-year follow-up. J Bone Miner Res
2011;26:35–41.
63. Reid IR, Bolland MJ, Avenell A, et al. Cardiovascular effects of
calcium supplementation. Osteoporos Int 2011;22:1649–58.
64. Karp HJ, Ketola ME, Lamberg-Allardt CJ. Acute effects of calcium
carbonate, calcium citrate and potassium citrate on markers of
calcium and bone metabolism in young women. Br J Nutr
2009;102:1341–7.
65. Tucker LA, Nokes N, Adams T. Effect of a dietary supplement on hip
and spine BMD: a randomized, double-blind, placebo-controlled trial:
1515: board #5 May 30 2:00 PM—3:30 PM. Med Sci Sports Exer
2007;39:S230.
66. West SL, Swan VJ, Jamal SA. Effects of calcium on cardiovascular
events in patients with kidney disease and in a healthy population.
Clin J Am Soc Nephrol 2010;5(Suppl 1):S41–7.
67. Reinhard KJ, Ambler JR, Szuter CR. Hunter-gatherer use of small
animal food resources: coprolite evidence. J Osteoarch
2007;17:416–28.
68. Vieugue J, Salanova L, Regert M, et al. The consumption of bone
powder in the early neolithic societies of Southeastern Europe:
evidence of a diet stress? Cambridge Archaeological J
2015;02:495–511.
69. Schulman RC, Weiss AJ, Mechanick JI. Nutrition, bone, and aging:
an integrative physiology approach. Curr Osteoporos Rep
2011;9:184–95.
70. Epstein O, Kato Y, Dick R, et al. Vitamin D, hydroxyapatite, and
calcium gluconate in treatment of cortical bone thinning in
postmenopausal women with primary biliary cirrhosis. Am J Clin
Nutr 1982;36:426–30.
71. Bischoff-Ferrari HA, Kiel DP, Dawson-Hughes B, et al. Dietary
calcium and serum 25-hydroxyvitamin D status in relation to
BMD among U.S. adults. J Bone Miner Res 2009;24:935–42.
Post Disclaimer
Professional Scope of Practice *
The information herein on this entire blog site is not intended to replace a one-on-one relationship with a qualified healthcare professional or licensed physician and is not medical advice. We encourage you to make healthcare decisions based on your research and partnership with a qualified healthcare professional.
Blog Information & Scope Discussions
Our information scope is limited to Chiropractic, musculoskeletal, physical medicines, wellness, contributing etiological viscerosomatic disturbances within clinical presentations, associated somatovisceral reflex clinical dynamics, subluxation complexes, sensitive health issues, and/or functional medicine articles, topics, and discussions.
We provide and present clinical collaboration with specialists from various disciplines. Each specialist is governed by their professional scope of practice and their jurisdiction of licensure. We use functional health & wellness protocols to treat and support care for the injuries or disorders of the musculoskeletal system.
Our videos, posts, topics, subjects, and insights cover clinical matters, issues, and topics that relate to and directly or indirectly support our clinical scope of practice.*
Our office has reasonably attempted to provide supportive citations and has identified the relevant research studies or studies supporting our posts. We provide copies of supporting research studies available to regulatory boards and the public upon request.
We understand that we cover matters that require an additional explanation of how they may assist in a particular care plan or treatment protocol; therefore, to discuss the subject matter above further, please feel free to ask Dr. Alex Jimenez, DC, or contact us at 915-850-0900.
We are here to help you and your family.
Blessings
Dr. Alex Jimenez DC, MSACP, RN*, CCST, IFMCP*, CIFM*, ATN*
email: coach@elpasofunctionalmedicine.com
Licensed as a Doctor of Chiropractic (DC) in Texas & New Mexico*
Texas DC License # TX5807, New Mexico DC License # NM-DC2182
Licensed as a Registered Nurse (RN*) in Florida
Florida License RN License # RN9617241 (Control No. 3558029)
Compact Status: Multi-State License: Authorized to Practice in 40 States*
Graduate with Honors: ICHS: MSN-FNP (Family Nurse Practitioner Program)
Degree Granted. Masters in Family Practice MSN Diploma (Cum Laude)
Dr. Alex Jimenez DC, MSACP, MSN-FNP, RN* CIFM*, IFMCP*, ATN*, CCST
My Digital Business Card