Nerve Injury

Traumatic Brain Injury and Neurodegenerative Diseases Part 1

Traumatic brain injury (TBI) is one of the most common causes of disability and death in people. About 1.6 million individuals suffer traumatic brain injuries in the United States every year. TBI can cause a process of injury which may ultimately cause a variety of neurodegenerative diseases and other health issues. Many of the neurodegenerative diseases following TBI include health issues such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). Β 

Β 

The mechanisms underlying the pathogenesis which result in these type of neurodegenerative diseases, however, are still completely misunderstood. Where many of the health issues following TBI have a high incidence, there are currently only several treatment approaches which can help prevent the pathological development of chronic neurological diseases. Β 

Β 

A better understanding of the mechanisms underlying TBI and neurodegenerative diseases is ultimately fundamental to determine the possible connection between these health issues to allow safe and effective diagnosis and treatment. In part 1 of the following article, we will discuss the pathological mechanisms of traumatic brain injury (TBI) and how it’s associated with the development of a variety of neurological diseases and other health issues, including Alzheimer’s disease (AD). Β 

Β 

Pathological Mechanisms of Traumatic Brain Injury

Β 

In most instances, TBI is caused by a physical blow to the head during traumatic events, such as falls, automobile accidents, or sports-related accidents, although TBI may also be aggravated by exposure to explosive blasts. TBI can be characterized as mild, moderate, or severe according to the symptoms, such as the length of loss of consciousness and post-traumatic amnesia. Mild TBI (mTBI) is prevalent in the majority of cases, however, it may be difficult to diagnose. This difficulty in diagnosis can be a serious concern as a result of severe consequences like instant impact syndrome or other health issues. Β 

Β 

Damage to the nervous tissue can be characterized as the main injury which happens as a direct effect of a physical blow and secondary injury which happens due to pathophysiological processes subsequent to the traumatic event. The injury process occurs from the rapid acceleration-deceleration of the brain which is believed to harm the brain by causing sheer force within tissue resulting in impact and axonal injury with the cranial wall. These injuries can be contralateral or ipsilateral to the physical blow. In more severe instances, the injury may cause intracranial hypertension and intracranial hemorrhage. This increase in pressure not only damages brain tissue but it also causes potential injury and cerebral hypoperfusion. Β 

Β 

Secondary injury in TBI generally happens several days, weeks, and even months following the traumatic circumstance because of the biochemical changes which occur in the nervous tissue. This harm is often mediated by free radicals and reactive oxygen species (ROS) which develop from ischemia-reperfusion damage, glutamatergic excitotoxicity, or neuroinflammation. After the injury, axonal damage from the sheer force of injury can affect membrane balance. Moreover, uptake of calcium through either membrane disruption or activation of the NMDA and the AMPA receptors by glutamate could ultimately cause mitochondrial dysfunction as well as the overproduction of free radicals and the activation of apoptotic caspase signaling. Following inflammatory processes associated with TBI, such as the activation of microglial cells, can cause oxidative stress through the effects of inflammatory cytokines. These radicals can also cause cellular damage through lipid peroxidation and protein modifications which can overwhelm endogenous antioxidant systems. The secondary products of free radical-mediated lipid peroxidation, such as reactive carbonyl species, can also be electrophilic and can further propagate oxidative damage to biomacromolecules, which can be associated with various neurological diseases. Β 

Β 

Clinical and preclinical research studies have demonstrated the presence of oxidative stress and its byproducts following TBI with both serological and histological methods and techniques. In animal research studies, these products have been demonstrated to continue over a recurrent injury and it may increase following a single traumatic event. Spectroscopic evaluations suggest that the endogenous antioxidants glutathione and ascorbic acid may decrease for 3 to 14 days following the injury. Furthermore, the increase of F2-isoprostane, a lipid peroxidation byproduct, was demonstrated in the cerebrospinal fluid of severe TBI patients with increased levels at 1 day following the injury, however, this was primarily an assessment of alternative treatment and didn’t establish a contrast with healthy controls. Lipid peroxidation products like 4-hydroxynoneal were also found to be elevated in the serum of acute TBI patients needing treatment. Although chronic oxidative stress has not currently been detected following single mild injuries in people, it seems possible that oxidative stress and its associated processes may aggravate or prolong post-concussive symptoms. Given the involvement of oxidative stress in excitotoxicity and reperfusion injury, it’s possible that oxidative stress plays a role in cerebral injury after TBI. Β 

Β 

The pathological mechanisms of secondary TBI are particularly interesting due to the ability to prolong cellular injury beyond the initial traumatic event. Some of these characteristic modifications, such as oxidative stress and excitotoxicity, have also been demonstrated in the pathophysiology of neurodegenerative diseases and other health issues which also suggests a possible pathological mechanistic connection between TBI and neurological diseases. Further research studies of the pathological mechanisms in cerebral diseases and TBI may help determine the factors for neurodegenerative diseases. Β 

Β 

Conclusion

Β 

Despite the prevalence of TBI the significant neurological sequelae associated with such injuries, diagnosis and treatment of TBI remains greatly misunderstood. In addition, the causing factors connected to TBI and neurodegenerative diseases, such as AD, PD, ALS, and CTE, have not been fully determined. Several processes, including oxidative stress and neuroinflammation, have also been found to be common between secondary TBI and several neurodegenerative diseases. In particular, oxidative stress appears to be the key mechanism connecting neuroinflammation and glutamatergic excitotoxicity in both TBI and neurological diseases. It is possible that the oxidative cascade caused by TBI ultimately causes and results in the characteristic pathologies of neurodegenerative diseases through oxidation or carbonylation of essential proteins. Β 

Β 

Due to the high prevalence of TBI and neurodegenerative diseases, the development of new safe and effective treatment approaches for TBI is fundamental. Given the essential role that oxidative stress plays in connecting secondary injury and neurodegeneration, detection of ROS and key byproducts could serve as a method or technique for the diagnosis and treatment of potential cellular damage. Finally, these reactive species may serve as a viable therapeutic target for reducing long-term neurodegenerative disease risk following TBI, helping to reduce the disability and death as well as improve the quality of life of individuals in the United States that suffer from traumatic brain injury (TBI) and other health issues. Β 

Β 

Traumatic brain injury is among one of the most prevalent causes of disability and death among the general population in the United States. According to a variety of research studies, mild, moderate, and severe traumatic brain injury has been associated with neurodegenerative diseases, such as Alzheimer’s disease, as well as a variety of other neurological diseases and health issues. It is fundamental to understand the pathophysiological mechanisms of traumatic brain injury while further research studies are still required to determine the association between TBI and neurodegenerative diseases. – Dr. Alex Jimenez D.C., C.C.S.T. Insight

Β 


Β 

Neuropathy Treatment with LLLT

Β 

Β 


Β 

Traumatic brain injury (TBI) is one of the most common causes of disability and death in people. About 1.6 million individuals suffer traumatic brain injuries in the United States every year. TBI can cause a process of injury which may cause a variety of neurodegenerative diseases and health issues, such as Alzheimer’s disease (AD). The scope of our information is limited to chiropractic, musculoskeletal and nervous health issues as well as functional medicine articles, topics, and discussions. To further discuss the subject matter above, please feel free to ask Dr. Alex Jimenez or contact us at 915-850-0900 . Β 

Β 

Curated by Dr. Alex Jimenez Β 

Β 


Β 

Additional Topic Discussion: Chronic Pain

Β 

Sudden pain is a natural response of the nervous system which helps to demonstrate possible injury. By way of instance, pain signals travel from an injured region through the nerves and spinal cord to the brain. Pain is generally less severe as the injury heals, however, chronic pain is different than the average type of pain. With chronic pain, the human body will continue sending pain signals to the brain, regardless if the injury has healed. Chronic pain can last for several weeks to even several years. Chronic pain can tremendously affect a patient’s mobility and it can reduce flexibility, strength, and endurance.

Β 

Β 


Β 

Neural Zoomer Plus for Neurological Disease

Β 

Β 

Dr. Alex Jimenez utilizes a series of tests to help evaluate neurological diseases. The Neural ZoomerTM Plus is an array of neurological autoantibodies which offers specific antibody-to-antigen recognition. The Vibrant Neural ZoomerTM Plus is designed to assess an individual’s reactivity to 48 neurological antigens with connections to a variety of neurologically related diseases. The Vibrant Neural ZoomerTM Plus aims to reduce neurological conditions by empowering patients and physicians with a vital resource for early risk detection and an enhanced focus on personalized primary prevention. Β 

Β 

Formulas for Methylation Support

Β 

XYMOGEN’s Exclusive Professional Formulas are available through select licensed health care professionals. The internet sale and discounting of XYMOGEN formulas are strictly prohibited.

Β 

Proudly,Β Dr. Alexander Jimenez makes XYMOGEN formulas available only to patients under our care.

Β 

Please call our office in order for us to assign a doctor consultation for immediate access.

Β 

If you are a patient of Injury Medical & ChiropracticΒ Clinic, you may inquire about XYMOGEN by calling 915-850-0900.

Β 

For your convenience and review of the XYMOGEN products please review the following link.*XYMOGEN-Catalog-Download Β 

Β 

* All of the above XYMOGEN policies remain strictly in force.

Β 


Β 

Β 

Post Disclaimer

General Disclaimer *

Professional Scope of Practice *

The information herein on this entire blog site is not intended to replace a one-on-one relationship with a qualified healthcare professional or licensed physician and is not medical advice. We encourage you to make healthcare decisions based on your research and partnership with a qualified healthcare professional.

Blog Information & Scope Discussions

Our information scope is limited to Chiropractic, musculoskeletal, physical medicines, wellness, contributing etiological viscerosomatic disturbances within clinical presentations, associated somatovisceral reflex clinical dynamics, subluxation complexes, sensitive health issues, and/or functional medicine articles, topics, and discussions.

We provide and present clinical collaboration with specialists from various disciplines. Each specialist is governed by their professional scope of practice and their jurisdiction of licensure. We use functional health & wellness protocols to treat and support care for the injuries or disorders of the musculoskeletal system.

Our videos, posts, topics, subjects, and insights cover clinical matters, issues, and topics that relate to and directly or indirectly support our clinical scope of practice.*

Our office has reasonably attempted to provide supportive citations and has identified the relevant research studies or studies supporting our posts. We provide copies of supporting research studies available to regulatory boards and the public upon request.

We understand that we cover matters that require an additional explanation of how they may assist in a particular care plan or treatment protocol; therefore, to discuss the subject matter above further, please feel free to ask Dr. Alex Jimenez, DC, or contact us at 915-850-0900.

We are here to help you and your family.

Blessings

Dr. Alex Jimenez DC, MSACP, RN*, CCST, IFMCP*, CIFM*, ATN*

email: coach@elpasofunctionalmedicine.com

Licensed as a Doctor of Chiropractic (DC) in Texas & New Mexico*
Texas DC License # TX5807, New Mexico DC License # NM-DC2182

Licensed as a Registered Nurse (RN*) in Florida
Florida License RN License # RN9617241 (Control No. 3558029)
Compact Status: Multi-State License: Authorized to Practice in 40 States*
Graduate with Honors: ICHS: MSN-FNP (Family Nurse Practitioner Program)
Degree Granted. Masters in Family Practice MSN Diploma (Cum Laude)

Dr. Alex Jimenez DC, MSACP, MSN-FNP, RN* CIFM*, IFMCP*, ATN*, CCST
My Digital Business Card

Β 

Recent Posts

Choosing the Right Knee Brace for Pain Relief and Support

Can a knee brace relieve discomfort, provide support, and expedite recovery for individuals recovering from… Read More

January 17, 2025

Easy and Effective Exercises to Strengthen and Support Your Spine and Back

Can individuals incorporate these simple but effective exercise routines to reduce pain and discomfort in… Read More

January 17, 2025

Relieving Back Spasms: The Role of Muscle Relaxers

For individuals who injure their neck or back, the muscles may spasm or seize up,… Read More

January 16, 2025

Achieve Restful Sleep with the Help of Natural Botanicals

Can many individuals with sleep issues incorporate natural botanicals to get a good night's sleep… Read More

January 16, 2025

Enhancing Wellness: Acupuncture for Anxiety and Panic Disorders

Can acupuncture be an effective treatment for anxiety and panic disorders in addition to other… Read More

January 15, 2025

Enhance Your Health with Chiropractic Care and Health Coaching

Can individuals reduce being sick by incorporating chiropractic care and health coaching as a treatment… Read More

January 15, 2025