El Paso, TX. Chiropractor, Dr. Alexander Jimenez discusses the anatomy of nerve fibers, receptors, spinal tracts and brain pathways. Regions of the Central Nervous System (CNS) coordinate various somatic processes using sensory inputs and motor outputs of peripheral nerves. Important areas of the CNS that play a role in somatic processes are separated in the spinal cord brain stem. Sensory pathways that carry peripheral sensations to the brain are referred to an ascending pathway, or tract. Various sensory modalities follow specific pathways through the CNS. Somatosensory stimuli activate receptors in the skin, muscles, tendons, and joints throughout the entire body. The somatosensory pathways are divided into two separate systems based on the location of the receptor neurons. Somatosensory stimuli from below the neck run along the sensory pathways of the spinal cord, and the somatosensory stimuli from the head and neck travel through cranial nerves.
ANATOMY OF RECEPTORS, NERVE FIBERS, SPINAL CORD TRACTS AND BRAINSTEM PATHWAYS
RECEPTORS AND RECEPTOR BASED THERAPY
NEURONS NEED THREE THINGS TO SURVIVE!
FUNCTIONAL NEUROLOGY KEY CONCEPTS
The cell needs three things to survive.
- Oxygen, glucose and stimulation.
- Stimulation = Chiropractic, exercise, etc.
- Stimulation leads to neuronal growth
- Neuronal growth leads to plasticity
- Subluxations alter the frequency of firing of neurons
- Activation of one side will stimulate ipsilateral cerebellum and contralateral cortex (usually)
- Proper stimulation CAN reduce pain.
Β
Β
CHIROPRACTIC IS RECEPTOR-BASED THERAPY
INTRODUCTION
- The ongoing activity and output of the CNS are greatly influenced, and sometimes more or less determined, by incoming sensory information.
- The basis of this incoming sensory information is an array of sensory receptors, cells that detect various stimuli and produce receptor potentials in response, often with astonishing effectiveness.
- The health of the neuron, however, plays a huge role in how neurons can produce receptor potentials, the endurance of the neuron and the ability to create plasticity.
- βNeurons that fire together, wire together.β Hebbian Theory
Β
Β
Β
Β
TYPES OF RECEPTORS
- Chemoreceptors
- Smell, taste, interoceptors
- Thermoreceptors
- Temperature
- Mechanoreceptors
- Cutaneous receptors for touch, auditory, vestibular, proprioceptors
- Nociceptors
- Pain
Β
PARTS OF RECEPTORS
Although their morphologies vary widely, all receptors have three general parts:
1. Receptive Area
2. Area Rich In Mitochondria
- Health of the neurons within the receptors will determine its response to stimulation
3. Synaptic Area To Pass Messages To The CNS
RECEPTIVE FIELDS
- These are particular areas in the periphery where application of an adequate stimulus causes the receptors to respond.
- Neurons in successive levels of sensory pathways (second- order neurons, thalamic and cortical neurons-also have receptive fields, although they may be considerably more elaborate than those of the receptors.
Β
Β
Β
Β
Β
Β
TRANSDUCTION
Sensory receptors use ionotropic and metabotropic mechanisms to produce receptor potentials
- Sensory receptors transduce some physical stimulus into an electrical signal β a receptor potential β that the nervous system can understand.
- Sensory receptors are similar to postsynaptic membranes as their adequate stimuli are analogous to neurotransmitters.
Β
Β
Β
Β
Β
THE DIAMETER OF A NERVE FIBER IS CORRELATED WITH ITS FUNCTION
BIGGER = FASTER
Larger fibers conduct action potentials faster than do smaller fibers.
- A? fibers are the largest and most rapidly conducting myelinated fibers.
- The slowest conducting fibers of the body are the C fibers
Β
Β
RECEPTORS IN MUSCLES AND JOINTS DETECT MUSCLE STATUS AND LIMB POSITION
MUSCLE SPINDLES
Muscle spindles (Fig. 9-14) are long, thin stretch receptors scattered throughout virtually every striated muscle in the body.
- These muscle spindles sense muscle length and proprioception (βoneβs ownβ perception).
- They are quite simple in principle, consisting of a few small muscle fibers with a capsule surrounding the middle third of the fibers.
- These fibers are called intrafusal muscle fibers (fusus is Latin for βspindle,β so intrafusal means βinside the spindleβ), incontrast to the ordinary extrafusal muscle fibers (βoutside the spindleβ).
- The ends of the intrafusal fibers are attached to extrafusal fibers, so whenever the muscle is stretched, the intrafusal fibers are also stretched.
- The central region of each intrafusal fiber has few myofilaments and is noncontractile, but it does have one or more sensory endings applied to it.
- When the muscle is stretched, the central part of the intrafusal fiber is stretched, mechanically sensitive channels are distorted, the resulting receptor potential spreads to a nearby trigger zone, and a train of impulses ensues at each sensory ending.
GOLGI TENDON ORGANS
- Golgi tendon organs are spindle-shaped receptors found at the junctions between muscles and tendons. They are similar to Ruffini endings in their basic organization, consisting of interwoven collagen bundles surrounded by a thin capsule (Fig. 9-16).
- Large sensory fibers enter the capsule and branch into fine processes that are inserted among the collagen bundles. Tension on the capsule along its long axis squeezes these fine processes, and the resulting distortion stimulates them.
Β
Β
Β
Β
Β
Β
- If tension is generated in a tendon by making its attached muscle contract, tendon organs are found to be much more sensitive and can actually respond to the contraction of just a few muscle fibers.
- Thus Golgi tendon organs very specifically monitor the tension generated by muscle contraction and come into play whe
- n fine adjustments in muscle tension need to be made (e.g., when handling a raw egg).
Β
Β
Β
Β
- Thus the mode of action of Golgi tendon organs is quite different from that of muscle spindles (Fig. 9-17). If a muscleΒ contracts isometrically, tension is generated across its tendons, and the tendon organs signal this; however, the muscle spindles signal nothing because muscle length has not changed (assuming that the activity of the gamma motor neurons remains unchanged).
- In contrast, a relaxed muscle can be stretched easily, and the muscle spindles fire; the tendon organs, however, experience little tension and remain silent. A muscle, by virtue of these two types of receptors, can have its length and tension monitored simultaneously.
www.ncbi.nlm.nih.gov/pmc/articles/PMC4668288/
www.ncbi.nlm.nih.gov/pubmed/23709641
By RYAN CEDERMARK, DC DACNB RN BSN MSN
Post Disclaimer
Professional Scope of Practice *
The information herein on "Receptors, Brainstem Pathways And Spinal Cord Tracts | El Paso, TX. | Part I" is not intended to replace a one-on-one relationship with a qualified health care professional or licensed physician and is not medical advice. We encourage you to make healthcare decisions based on your research and partnership with a qualified healthcare professional.
Blog Information & Scope Discussions
Our information scope is limited to Chiropractic, musculoskeletal, acupuncture, physical medicines, wellness, contributing etiological viscerosomatic disturbances within clinical presentations, associated somatovisceral reflex clinical dynamics, subluxation complexes, sensitive health issues, and/or functional medicine articles, topics, and discussions.
We provide and present clinical collaboration with specialists from various disciplines. Each specialist is governed by their professional scope of practice and their jurisdiction of licensure. We use functional health & wellness protocols to treat and support care for the injuries or disorders of the musculoskeletal system.
Our videos, posts, topics, subjects, and insights cover clinical matters, issues, and topics that relate to and directly or indirectly support our clinical scope of practice.*
Our office has reasonably attempted to provide supportive citations and has identified the relevant research studies supporting our posts. We provide copies of supporting research studies available to regulatory boards and the public upon request.
We understand that we cover matters that require an additional explanation of how it may assist in a particular care plan or treatment protocol; therefore, to further discuss the subject matter above, please feel free to ask Dr. Alex Jimenez, DC, or contact us at 915-850-0900.
We are here to help you and your family.
Blessings
Dr. Alex Jimenez DC, MSACP, RN*, CCST, IFMCP*, CIFM*, ATN*
email: coach@elpasofunctionalmedicine.com
Licensed as a Doctor of Chiropractic (DC) in Texas & New Mexico*
Texas DC License # TX5807, New Mexico DC License # NM-DC2182
Licensed as a Registered Nurse (RN*) in Florida
Florida License RN License # RN9617241 (Control No. 3558029)
Compact Status: Multi-State License: Authorized to Practice in 40 States*
Presently Matriculated: ICHS: MSN* FNP (Family Nurse Practitioner Program)
Dr. Alex Jimenez DC, MSACP, RN* CIFM*, IFMCP*, ATN*, CCST
My Digital Business Card