The Role of Innate Immunity in Brain Health and Alzheimer's Disease

Rudolph E. Tanzi

Joseph P. and Rose F. Kennedy Professor of Neurology Harvard Medical School

Vice-Chair, Dept. of Neurology Director, Genetics and Aging Research Unit Co-Director, MassGeneral Institute for Brain Health Co-Director, MassGeneral Institute for Neurodegeneration Massachusetts General Hospital

Disclosures:

- Financial Interest: Neurogenetics, Inc / React Neuro, Inc / Cognitive Clarity, Inc / Verge Genomics, Inc/ Alterity, Inc / Cognoptix, Inc / Genomind, Inc / DRADS Capital / Interaxon, Inc
- Paid Consultant and Financial Interest: AZTherapies, Inc / Amylyx, Inc / Promis, Inc / Cerevance, Inc / Chromadex, Inc / Jefferson Pharm., Inc / Annovis, Inc / MarvelBiome, Inc /TrialSight, Inc
- Paid Consultant: Takeda, Inc / FujiFilm, Inc / CAMP4

Off-Label Usage:

None

Learning Objectives:

- Update on the Etiology and Pathogenesis of Alzheimer's Disease
- How to treat the right Alzheimer's Pathology at the Right Stage of the Disease
- Update on the genetic basis of neuroinflammation in Alzheimer's disease
- Review of lifestyle Interventions to reduce risk for Alzheimer's disease

Alzheimer's Disease

- Most common *form* of dementia in the elderly
- 5.5 million patients in U.S.: Medical Cost \$300B/Year!
- Pre-symptomatic AD brain pathology before symptoms: 38M!!
- Risk: Age, Family History, Head Injury, Stroke, High BP, Gender
- Women make up 2/3 of Alzheimer's disease patients
- 30-40% >85 have AD Current lifespan~80 years
- Number of cases will triple by 2050 → Epidemic!

Alzheimer's Pathology \rightarrow Amyloid Hypothesis \rightarrow Genes \rightarrow Amyloid Cascade Hypothesis

Get rights and content.

Beta-Amyloid Deposition

NFT/Tauopathy

Neuro-inflammation

Alzheimer's disease and Down's syndrome: Sharing of a unique cerebrovascular amyloid fibril protein

Gestge G. Giennes M.D. Cane W. Worg Show more 👽

https://doi.org/10.2010/0006-2913/96691209-7

Abstract

The cerebrovascular amyloid protein from a case of adult Down's syndrome was isolated and purified. Amino acid sequence analysis showed it to be homologous to that of the \$ protein of Alzheimer's disease. This is the first chemical evidence of a relationship between Down's sundrome and Alzheimer's disease. It supposts that Down's syndrome may be a predictable model for Alzheimer's disease. Assuming the fl protein is a human gene product, it also suggests that the genetic defect in Alzheimer's disease is localized on chromosome 21.

Proc. Natl. Acad. Sci. USA Vol. 82, pp. 4245-4248, June 1983

Amyloid plaque core protein in Alzheimer disease and Down syndrome

manual ADD of June

COLIN L. MASTERS⁴⁷, GAIL SIMMS⁴, NICOLA A. WEIMMAN⁴, GERD MULTHAUP¹, BRIAN L. MCDONALD⁴, AND KONRAD BEYRELTHER⁴

Amyloid B Protein Gene: cDNA, mRNA Distribution, and Genetic Linkage Near the Alzheimer Locus

RUDOLPH E. TANZI, JAMES F. GUSELLA, PAUL C. WATKINS, GAIL A. P. BRUNS, PITTIR ST GEORGE-HYSLOF, MARGARET L. VAN KRUREN, DAVID PATTERSON, SUSAN PAGAN, DAVID M. KURNIT, RACHAEL L. NEVE*

The anyloid ß protein has been identified as an vacular anytoid and anytoid plaques of Alzheimer's disc ar and Down in brain

fer tino

n of this

NATURE VOL. 325 19 FEBRUARY 1587

The precursor of Alzheimer's disease addition amyloid A4 protein resembles a cell-surface receptor

Jie Kang, Hans-Georg Lemaire, Axel Unterbeck, J. Michael Salbaum, Colin L. Masters*, Karl-Heinz Grzeschik†, Gerd Multhaup, Konrad Revreuther & Benno Müller-Hill

Characterization and Chromosomal Localization of a cDNA Encoding Brain Amyloid of Alzheimer's Disease

DMITRY GOLDGARER, MICHAEL L. LERMAN, O. WIELEY MCBRIDE, UMERETO SAPPIOITI, D. CARLETON GAIDUSEE

Four closes were instated from an adult human brain complementary DNA library with an eligenceleotide profe corresponding to the first 20 anisos solid of the β papele of brain anythic from Aldminne's disease. The open reading frame of the

Mutation of the Alzheimer's Disease Amyloid Gene in Hereditary Cerebral Hemorrhage, Dutch Type

EFRAT LEVY,* MARK D. CARMAN, IVAN J. FERNANDEZ-MADRED, MICHAEL D. POWER, IVAN LIEBERFURG, SDORD G. VAN DUIDEN, GERARD TH. A. M. BOTS, WILLEN LUYENDIR, BLAS PRANGTONE

Segregation of a missense

mutation in the amyloid precursor protein gene with

familial Alzheimer's disease

Alison Goate*, Marie-Christine Chartier-Harlin* Mike Mullan*, Jeremy Brown*, Fiona Crawford*, Liana Fidani*, Luis Giuffra†, Andrew Haynes†, Nick Irving*, Louise Jamest, Rebecca Mantil, Philipps Newton*, Karen Rooks*, Punelops Ro Chris Talbot*, Margaret Pericak-Vancei, Allen Rosesi Robert Williamson*, Martin Rossor*, Mike Owen & John Hardy**

Missense mutations in APP, PS1, or PS2 genes Increased AB42 production and accumulation

> AB42 oligomerization and deposition as diffuse plaques

Subtle effects of Aß oligomers on synapses

Microglial and astrocytic activation (complement factors, cytokines, etc.)

Progressive synaptic and neuritic injury

Altered neuronal ionic homeostasis; oxidative injury

Altered kinase/phosphatase activities > tangles

Widespread neuronal/neuritic dysfunction and cell death with transmitter deficits

Original AD Genes Support the Amyloid Hypothesis of AD

Onset	Gene	Mutation/Variant	Consequence
Early Onset <60 yr	APP PSEN1 PSEN2	<i>Mutations Guarantee EO FAD</i> 18 180 16	 ↑ Ratio of Aβ42:Aβ40 (Aβ42 seeds β-amyloid) ↑ Aggregation of Aβ ↑ Production of Aβ
Late Onset >60 yr	APOE	<i>ε</i> 4 Increases Risk for AD: ε4 - 3.7 (het) to 14-fold (hom) increased risk	↑ Aβ Deposition

Alzheimer's Disease Pathology

Plaques

Tangles

Video: Visual MD

Amyloid Cascade Hypothesis

Missense mutations in APP, PS1, or PS2 genes Increased AB42 production and accumulation AB42 oligomerization and deposition as diffuse plaques e effects of Aβ oligomers on synapses Vicroglial and astrocytic activation omplement factors, cytokines, etc.) ogressive synaptic and neuritic injury Itered neuronal ionic homeostasis: oxidative injury Altered kinase/phosphatase activities > tangles Widespread neuronal/neuritic dysfunction and cell death with transmitter deficits Dementia

Despite strong genetic evidence in favor of the amyloid hypothesis: Tg AD mice expressing FAD gene mutations have β -amyloid plaques and inflammation but *no* tangles..questioning amyloid hypothesis

Amyloid Hypothesis: Amyloid plaques cause tangles that kill nerve cells

Mice are NOT Good Models for Alzheimer's Disease We are not big mice!

3D Human Neural Cell Culture Model of AD: A β Directly Induces Tangles Plaques (4 Weeks) \rightarrow Tangles (5 Weeks)

Choi et al., Nature, 2014; Kim et al., Nature Prot., 2015

β - and γ -secretase inhibitors/modulators lower β -amyloid (6 wks) and lead to dramatic reductions in phospho-tau and tangles (8 wks)

Tangle Formation depends on 3R:4R ratio: 2D vs. 3D; ReN vs. hiPSC

Туре	Gene Name	ReN-G 2D- differentiated (fold increases)	ReN-G, 3D- differentiated (fold increases)
Neuronal	NCAM1	15.1 ± 2.9	39.7 ± 25.7
	SYT5	7.2 ± 0.6	3.6 ± 1.2
	SLC17A7 (VGLUT1)	3.8 ± 0.7	184.3 ± 64.5
	GRIN2A (NR2A))	2.6 ± 1.2	134.1 ± 63.4
	EAAT3	2.1 ± 0.5	45.1 ± 9.4
	ACHE	4.8 ± 1.9	4.6 ± 1.3
	SLC6A4	3.3 ± 1.7	87.0 ± 33.9
	GABRA1	4.9 ± 0.7	239.3 ± 57.9
	MAPT	33.0 ± 5.4	525.3 ± 156.9
Glial	S100β	7.6 ± 1	138.8 ± 42.2
	GFAP	17.3 ± 4.8	118.0 ± 34.9
	EAAT2	3.3 ± 0.3	107.1 ± 18.9
	MBP	4.1 ± 1.0	2.4 ± 1.5

 Control ReN cells:

 ReN-G,
 GFP

 FAD ReN cells:

 ReN-GA,
 APP^{Sw/Lon}

 ReN-mGAP,
 APP^{Sw/Lon}+PS1^{ΔE9}

3D non-cell-autonomous model of AD: A β Oligomers Cause Tangles

The β-amyloid Cascade Hypothesis (Redefined in 3D Human Neural Cultures)

The New Hork Eimes

SUBSCRIBE NOW

'Amazing, Isn't It?' Long-Sought Blood Test for Alzheimer's in Reach

Scientists say such tests could be available in a few years, speeding research for treatments and providing a diagnosis for dementia patients who want to know if they have Alzheimer's disease. Phospho-Tau217: Biomarker for β-amyloid-induced tauopathy (AD)

The Spectrum of Induced Tauopathies:

- Alzheimer's disease is an amyloid-induced tauopathy that triggers an insidious and vicious cycle of neuroinflammation and neurodegeneration gradually leading to cognitive decline and dementia.
- Frontotemporal Lobe Dementia (FTLD) is a direct (often genetic-induced) tauopathy that trigger an insidious and vicious cycle of neuroinflammation and neurodegeneration gradually leading to cognitive decline and dementia.
- Chronic Traumatic Encephalopathy is a head trauma-induced tauopathy that triggers an insidious and vicious cycle of neuroinflammation and neurodegeneration gradually leading to cognitive decline and dementia.
- All three of these *induced tauopathies require decades* of tangles and neuroinflammation spreading through the brain eventually leading to dementia, which likely begins early in life, e.g. CTE and playing football as a young adult.

All Alzheimer's clinical trials targeting amyloid have failed to improve cognition in AD: *Exception: Biogen – Aducanumab ??*

Davis (Chiefe			Time of		Clinical Triple and	
Name)	Study Population	Target/Mechanism	Molecule	Outcome	NCT Identifier	Reference
Bapinezumab	Mild-to-moderate AD	Soluble and fibrillar Aß	Monocional antibody	No effect on cognition or ADL	NCT00575055 NCT00574132	(Saloway et al., 2014)
Solanezumab (EXPEDITION-1, 2 and 3)	Mild-to-moderate AD; mild AD	Soluble monomeric Aß	Monoclonal antibody	No effect on cognition or ADL	NCT00905372 NCT00904683	(Doody et al., 2014; Honig et al., 2018)
Crenezumab (CREAD-1/2)	very-mild-to-mild AD with amyloid positive biomarkers	Oligomeric, fibrillar and plaque-based All	Monocional antibody	No effect on cognition or ADL on preliminary analysis	NCT03114657	
Aducanumab (ENGAGE: EMERGE)	Mid AD	Contormation- specific Ap aggregates	Monocional Antibody	No change in rate of cognitive decline	NCT03639987	(Selkoe, 2019)
AN-1792	Mild-to-moderate AD	Active immunization	Full-length A§42 Immunogen	Trial halted due to development of meningoencephalitis in 4 patients	NCT00021723	
Semagacestat (IDENTITY-1/2)	Mild-to-moderate AD	γ-secretase inhibitor	Small molecule	No effect on cognition or ADL; increased risk of skin cancer	NCT01035138 NCT00594568	(Doody et al., 2013)
Tarenflurbil	Mild AD	γ-secretase modulator	Small molecule	No effect on cognition or ADL	NCT00105547	(Green et al., 2009)
CNP520 (Umibecestat) (API Generation)	Cognitively normal APOE £4/ £4 carriers	BACE1 inhibitor	Small molecule	Worse cognitive performance, weight loss	NCT03131453 NCT02565511	(Lopez Lopez et al., 2019)
Lanabecestat (AMARANTH; DAYBREAK-ALZ)	Very-mid-to-mid AD	BACE1 inhibitor	Small molecule	No effect on cognition or ADL	NCT02783573 NCT02245737	
Atabecestat	Preclinical AD; positive amyloid, normal cognition	BACE1 inhibitor	Small molecule	Worse performance on some cognitive tests; in some cases, prominent side effects	NCT02569398	(Henley et al., 2019)
Verubecestat (APECS)	Prodromal AD	BACE1 inhibitor	Small molecule	Worse performance on some cognitive tests and in ADL	NCT01953601	(Egan et al., 2018, 2019)
Elenbecestat (MISSION-AD1/2)	Mid AD	BACE1 inhibitor	Small molecule	Unspecified safety concerns upon	NCT02956488 NCT03036280	

Long JM, Holtzman D, Cell, 2019

Aβ and Tau-Tangle Pathology Precedes Symptoms by Decades

Cognitively normal PIB -/MRI-	Cognitively normal PIB +; MRI-	Dementia/AD PIB +; MRI+
	G	G 30 25 20 36 10 05 0
Primary prevention • Pathology -; • Symptoms -	2 nd prevention • Pathology +; • Symptoms -	Tertiary prevention / treatment • Pathology ++; • Symptoms+

Jack et al., 2010Sperling et al., 2011

Preventing Alzheimer's

Early Prediction (Family History, Gene Testing)

Early Detection (Imaging, Biomarkers, Digital)

Early Intervention (Stop Pathology a Decade before Dementia)

rs6656401	rs4844610	1	CR1
rs4575098	rs4663096	1	ADAMTS4
rs6733839		2	BIN1
rs35349669	rs10933431	2	INPP5D
rs18438474			
6		3	HESX1
rs6448453	rs6448799	4	HS3ST1
rs10948363	rs9473117	6	CD2AP
rs78738018		6	HLA-DQB1
rs75932628	rs385758, rs114812713	6	TREM2
rs11771145	rs11762262	7	EPHA1
rs1476679	rs12539172 rs1859788	7	NYAP1
rs11436049			
2		7	CNTNAP2
rs9331896	rs867230	8	CLU
rs28834970	rs73223431	8	РТК2В
rs7920721		10	ECHDC3
rs983392		11	MS4A6A
rs10792832 rs3851179	rs867611	11	PICALM
rs11218343		11	SORL1
rs10838725	rs3740688	11	SPI1
rs10498633	rs12881735	14	SLC24A4
rs17125944	rs17125924	14	FERMT2
rs442495	rs593742	15	ADAM10
rs11761801			
7		15	APH1B
rs72824905		16	PLCG2
rs59735493		16	КАТ8
rs616338	rs28394864	17	ABI3
rs7225151		17	SCIMP
rs13819008			
6	rs6504163, rs6504163	17	ACE
rs76726049		18	ALPK2
	rs12151021, rs3752246		
rs4147929	rs111278892	19	ABCA7
rs3865444		19	CD33
rs76320948		19	BHMG1
rs7274581	rs6024870	20	CASS4
rs2830500		21	ADAMTS1
rs7185636			IQCK1

Polygenic risk of Alzheimer disease is associated with early- and late-life processes

Elizabeth C. Mormino, ABSTRACT

PhD Reisa A. Sperling, MD Avram J. Holmes, PhD Randy L. Buckner, PhD Philip L. De Jager, MD, PhD Jordan W. Senoller, MD, ScD Mert R. Sabuncu, PhD For the Alzheimer's Disease Neumimaging Initiative

Objective: To examine associations between aggregate genetic risk and Alzheimer disease (AD) markers in stages preceding the clinical symptoms of dementia using data from 2 large observational cohort studies.

Methods: We computed polygenic risk scores (PGR5) using summary statistics from the International Genomics of Alzheimer's Project genome wide association study of AD. Associations between PGRS and AD markers (cognitive decline, clinical progression, hippocampus volume, and β-amyloid) were assessed within older participants with dementia. Associations between PGR5 and hippocampus volume were additionally examined within healthy younger participants (age 18–35 years).

Results: Within participants without dementia, elevated PGRS was associated with worse memory (p = 0.002) and smaller hippocampus (p = 0.002) at baseline, as well as greater longitudinal cognitive decline (memory: p = 0.0005, executive function: p = 0.01) and clinical progression (p < 0.00001). High PGRS was associated with AD-like levels of p-amybid burden as measured with florbetapir PET

Polygenic hazard score, amyloid deposition and Alzheimer's neurodegeneration

Chin Hong Tan,^{1,2,*} Luke W. Bonham,^{3,*} Chun Chieh Fan,⁴ Elizabeth C. Mormino,⁵ Leo P. Sugrue,² Iris J. Broce,² Christopher P. Hess,² Jennifer S. Yokoyama,³ Gil D. Rabinovici,³ Bruce L. Miller,³ Kristine Yaffe,^{3,6,7} Gerard D. Schellenberg,⁸ Karolina Kauppi,⁹ Dominic Holland,¹⁰ Linda K. McEvoy,⁹ Walter A. Kukull,¹¹ Duygu Tosun,² Michael W. Weiner,^{2,3} Reisa A. Sperling,¹² David A. Bennett,¹³ Bradley T. Hyman,¹² Ole A. Andreassen,¹⁴ Anders M. Dale,^{4,9,10} and Rahul S. Desikan^{2,3} for the Alzheimer's Disease Neuroimaging Initiative[#]

Preventing Alzheimer's

Early Prediction (Family History, Gene Testing)

Early Detection (Imaging, Biomarkers, Digital)

Early Intervention (Stop Pathology a Decade before Dementia)

BRAIN IMAGING – PET & MRI

The Impact of Amyloid-Beta and Tau on Prospective Cognitive Decline in Older Individuals

Reisa A. Sperling, MD,^{1,2†} Elizabeth C. Mormino, PhD,^{1,3†} Aaron P. Schultz, PhD,¹
 Rebecca A. Betensky, PhD,^{1,4} Kathryn V. Papp, PhD,^{1,2} Rebecca E. Amariglio, PhD,^{1,2}
 Bemard J. Hanseeuw, MD, PhD,^{1,5} Rachel Buckley, PhD,⁰,^{1,6} Jasmeer Chhatwal, MD, PhD,^{1,7}
 Trey Hedden, PhD,^{1,5} Gad A. Marshall, MD,^{1,2} Yakeel T. Quiroz, PhD,^{1,7}
 Nancy J. Donovan, MD,^{1,2,2} Jonathan Jackson, PhD,¹ Jennifer R. Gatchel, MD, PhD,^{1,7,8}
 Jennifer S. Rabin, PhD,^{1,7} Heidi Jacobs, PhD,⁹, ¹ Hyun-Sk Yang, MD,^{1,2}
 Michael Properzi, BS,¹ Dylan R. Kim, MPH,¹ Dorene M. Rentz, PsyD,^{1,2} and Keith A. Johnson, MD,^{1,2,5,91}

BLOOD TESTS

HEALTH

DIGITAL & EYE TESTS

قhe New York Times 'Amazing, Isn't It?' Long-Sought Blood Test for Alzheimer's in Reach

Scientists say such tests could be available in a few years, speeding research for treatments and providing a diagnosis for dementia patients who want to know if they have Alzheimer's disease.

- Phospho-Tau217: Biomarker for β-amyloid-induced tauopathy (AD-specific)
- NFL Biomarker for neurodegeneration

*Financial Interest/Co-Founder of React Neuro

Preventing Alzheimer's

Early Prediction (Family History, Gene Testing)

Early Detection (Imaging, Biomarkers, Digital)

Early Intervention (Stop Pathology a Decade before Dementia)

Artide pubsacs.org/bicchemistry

Soluble γ -Secretase Modulators Selectively Inhibit the Production of the 42-Amino Acid Amyloid β Peptide Variant and Augment the Production of Multiple Carboxy-Truncated Amyloid β Species

Steven L. Wagner,^{®†} Can Zhang,[‡] Soan Cheng,[†] Phuong Nguyen,[†] Xulun Zhang,[⊥] Kevin D. Rynearson,[†] Rong Wang,[§] Yueming Li,^{||} Sangram S. Sisodia,[⊥] William C. Mobley,[†] and Rudolph E. Tanzi[‡]

[†]Department of Neurosciences, University of California, San Diego, La Jolla, California 92093-0624, United States

⁴Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States

^bDepartment of Genetics and Genomic Sciences, Icahn Institute, New York, New York 10029, United States

^IMolecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, United States

¹The Center for Molecular Neurobiology, University of Chicago, Chicago, Illinois 60637, United States

Gamma Secretase Modulators:

- Allosteric Modulators of
 Docking Site
- Reduce Aβ42:Aβ40 Ratio
- Ic50 ~5 nM for Aβ42
- These are *not* Gamma Secretase Inhibitors
 - No inhibition of cleavage of other γ-secretase substrates, e.g. Notch
- Best used pre-symptomatically
- Phase 1 Trials Planned in Early 2021 at MGH and UCSD

Drug repositioning: FDA-approved drugs

- 1.We finished primary screening of 2,640 drug library including most FDA-approved drugs (LOPAC+Tocriscreen+240 kinase inhibitors) using high content screening of p-tau/NFT accumulation.
- 2.We identified 38 primary hits that dramatically reduce p-tau-positive neurites and cell bodies by >90% in a 6-week-differentiated 3D ReN-GA2 AD model.

Courtesy of Dr. Steve Wong

3D Human Stem Cell-Derived Neural Culture - High Content Screening: 38 drugs lower P-Tau/tangles by ≥90%

30 drugs: Inhibitory effect on p-tau/tangles is independent of A β deposition

8 drugs: Inhibitory effect on p-tau/tangles is dependent on reduced A β deposition

Steve Wong and Doo Yeon Kim, Unpublished

Targeting Alzheimer's Pathology: Repositioning Safe Drugs

- We screened 2,640 drugs including all FDAapproved drugs plus other safe brainpermeable drugs.
- We identified 38 drugs that reduce tangle formation by >90% in our 3D human stem cellderived neural cell cultures - (Alzheimers-ina Dish)

Drug repositioning: Expanding library screening capacity using bioinformatics

- 1. Transcriptomic profiles for 22 out of the 38 primary hits (for~20 different cell lines) were available in CLUE.IO (LINCS) transcriptome database (Broad Institute).
- 2. In silico drug screening against ~20,413 compounds in CLUE.IO database library, using shared transcriptome patterns of the 4 seed compounds.
- 3.59 new drug candidates, 10 of which were positive in their HCS screening.

CLUE.IO perturbation database (~20,403 drugs in)

Drs. Stephan Wong and Zheng Ying

AD drug development **Drug Discovery/Screening Preclinical Tests Clinical Trials 2D** AD mouse models **Biochemical assay or 2D cell** culture model **3D** 3D human neural cell culture model of AD In silico screening new AD drug candidate NIH LINCS L1000 gene expression database (~21000 drugs)

Neural network & deep layer learning

Choi et al., Mol. Neurodegn. 2016

Aβ function?

- Human Aβ: Highly conserved across at least 400 million years Coelacanth fish has human Aβ sequence
- Nearly all vertebrates express Aβ and 60-70% species have human Aβ sequence

Aβ is an Antimicrobial Peptide (AMP) in the Brain

Antimicrobial Protection Hypothesis: Alzheimer's pathology is an orchestrated innate immune response that has evolved along with AD susceptibility gene variants to protect the brain against acute and low-grade microbial infections.

- AMP: Host defense peptides "Foot Soldiers of Innate Immunity"
 - LL-37, defensins, protegrins, temporins, etc.
- Effective Against:
 - Bacteria, Enveloped viruses, Fungi, Tumor Cells
- Typical AMP structure:
 - 12 and 50 amino acid charged peptides
 - α -helix, β -sheet, or combination
- Known AMPs that cause clinical amyloidosis;
 - lactoferrin- corneal amyloidosis
 - semenogelin seminal vesicle amyloid
 - Lactadherin aortic medial amyloid

Rob Moir 1961-2019

Aβ: Highly Effective AMP against 8 clinical pathogens

- Candida albicans
- Escherichia coli
- Staphylococcus epidermidis
- Streptococcus pneumoniae
- Staphylococcus aureus
- Listeria monocytogenes
- Enterococcus faecalis
- Streptococcus agalactiae

Soscia et al, 2010

Amyloid-β Protects Against Infection in Animal Models of Alzheimer's Disease

D.K.V. Kumar et al. / Science Translational Medicine (2016)

Amyloid-β is Rapidly Seeded into Plaques by Bacteria and Virus - Overnight !!

HSV1 rapidly "seeds" diffuse β-amyloid in 36 hours in 1.5 month-old 5XFAD mice; neuritic plaques in 21 days

HSV1-seeded amyloid in 5XFAD Tg mice; co-localization of herpes and Aß immunosignal

The Innate Immune Hypothesis of Alzheimer's Disease

Innate Immune Protection Hypothesis Pt. 1: Role of AD Pathology

Alzheimer's pathology (plaques, tangles, neuroinflammation) is an orchestrated innate immune response that has evolved to protect the brain against the microbial infection.

- $A\beta$ is an antimicrobial peptide that can protect the brain against microbes.
- Sub-clinical infections in the brain rapidly "seed" toxic β -amyloid to trap microbes
- Infection drives Aβ opsonization ("Eat Me" signal for microglia)
- Aβ also blocks neurotransmission (LTP) and induces vasoconstriction
- Tangles form in response to virus and A $\beta-$ blocks neurotropic viral spread
- Aβ plus neuronal cell death induce neuroinflammation leading to neurodegeneration

Innate Immune Protection Hypothesis Pt. 2: Role of AD Risk Genes

AD-associated genetic risk variants were evolutionarily conserved to keep β -amyloid deposition, tangle formation, and gliosis/neuroinflammation on a "hair trigger" to protect a subset of the human species in the advent of a major epidemic of brain infection.

Key Questions:

If AD pathology has evolved to protect the brain from microbial infection, and AD genetic risk variants have been evolutionarily conserved to promote this pathology when necessary...

Which microbes (if any) may drive AD pathology? When?

What are the relative contributions of *microbes, genes,* and *lifestyle* in driving Alzheimer's disease pathology, today?

Alzheimer's Disease and Infection

• Fungal infections

• (Prusiner, 2013; Alonso et al., 2014; Heintz and Mair, 2014)

• Herpes (HSV1)

 (Jamieson et al., <u>1991</u>; Kammerman et al., <u>2006</u>; Itzhaki and Wozniak, <u>2008</u>; Toma et al., <u>2008</u>; Lukiw et al., <u>2010</u>; Ball et al., <u>2012</u>; Agostini et al., <u>2014</u>; Mancuso et al., <u>2014</u>)

Chlamydophila pneumoniae

- (Balin and Hudson, 2014; Wunderink and Waterer, 2014, Pisa, 2017)
- HIV and HAND
 - (Borjabad and Volsky, 2012; Widera et al., 2014)
- Toxoplasma
 - (Prandota, <u>2014</u>)
- Hepatitis
 - (Chiu et al., <u>2013;</u> Karim et al.,<u>2014</u>)
- Cytomegalovirus
 - (Lurain et al., 2013)

RESULTS BY YEAR

>4400 Papers: Alzheimer + Infection

Parkinsonism Relat Disord. 2010 November ; 16(9): 566-571. doi:10.1016/j.parkreldis.2010.06.012.

Parkinsonism and Neurological Manifestations of Influenza Throughout the 20th and 21st Centuries

Bohmwald et al.

Julie Henry, B.S., Department of Neurolog

Richard J. Smeyne, Pt Department of Developr TN

Haeman Jang, PhD., Department of Developr TN

Bayard Miller, M.D., an Department of Neurolog

Michael S. Okun, M.D. Departments of Neurolo Gainesville FL

Review

Human Coronaviruses and Other Respiratory Viruses: Underestimated Opportunistic Pathogens of the Central Nervous System?

Marc Desforges ^{1,*}, Alain Le Coupanec ¹, Philippe Dubeau ¹⁽⁰⁾, Andréanne Bourgouin ¹, Louise Lajoie ², Mathieu Dubé ^{1,3} and Pierre J. Talbot ^{1,*}

described to secrete IL-6, IL-12p40, IL-15, TNF-α, CXCL9 and CXCL10 upon viral infection.

Resilient (*Mismatch*) Brains: Plaque and Tangle Counts Consistent with Alzheimer's, but.. but *No* Neuronal Loss or Dementia *If* there are minimal activated microglia and astrocytes

AD-Associated Genes by GWAS 2008-2019

Jansen et al (2019)

Kunkle et al (2019)

Bertram and Tanzi, Nature Rev. Neurosci, 2019

rs6733839	rs4663096	1 2
rs35349669 rs18438474	rs10933431	2
6		3
rs6448453	rs6448799	4
rs10948363	rs9473117	6
rs78738018		6
rs75932628	rs385758, rs114812713	6
rs11771145	rs11762262	7
rs1476679	rs12539172 rs1859788	7
rs11436049		, 7
rs9331896	rs867230	8
rs28834970	rs73223431	8
rs7920721		1
rs983392		1
rs10792832 rs3851179	rs867611	1
rs11218343		1
rs10838725	rs3740688	1
rs10838725 rs10498633	rs3740688 rs12881735	1: 14
rs10838725 rs10498633 rs17125944	rs3740688 rs12881735 rs17125924	1: 14 14
rs10838725 rs10498633 rs17125944 rs442495	rs3740688 rs12881735 rs17125924 rs593742	1: 14 14 14
rs10838725 rs10498633 rs17125944 rs442495 rs11761801 7	rs3740688 rs12881735 rs17125924 rs593742	1: 14 14 1: 1:
rs10838725 rs10498633 rs17125944 rs442495 rs11761801 7 rs72824905	rs3740688 rs12881735 rs17125924 rs593742	1: 14 14 15 15
rs10838725 rs10498633 rs17125944 rs442495 rs11761801 7 rs72824905 rs50735402	rs3740688 rs12881735 rs17125924 rs593742	1: 14 14 11 11 10
rs10838725 rs10498633 rs17125944 rs442495 rs11761801 7 rs72824905 rs59735493 rs616228	rs3740688 rs12881735 rs17125924 rs593742	1: 14 14 19 19 10 10
rs10838725 rs10498633 rs17125944 rs442495 rs11761801 7 rs72824905 rs59735493 rs59735493 rs616338 rc7225151	rs3740688 rs12881735 rs17125924 rs593742 rs28394864	1: 14 14 19 19 10 10 10
rs10838725 rs10498633 rs17125944 rs442495 rs11761801 7 rs72824905 rs59735493 rs616338 rs7225151	rs3740688 rs12881735 rs17125924 rs593742 rs28394864	1: 14 14 11 11 10 10 11 17

rs4844610

CR1

BIN1

1

1

2

10 11

11

11

11

14

14

15

15 16

16

17

17

18

19

19

CLU

SPI1

КАТ8

ABI3

ALPK2

ABCA7

CD33

rs6656401

rs4147929

rs3865444

Fastest growing group of ADAMTS4 **AD** Genes involved with INPP5D innate immunity: HESX1 **CD33** HS3ST1 CD2AP TREM2 HLA-DQB1 **CR1** TREM2 **HLA Cluster** EPHA1 NYAP1 **CLU** CNTNAP2 **MS4A** Cluster РТК2В SPI1 ECHDC3 MS4A6A PLCG2 PICALM ABI3 SORL1 ABCA7 SLC24A4 ADAMTS4 FERMT2 CD2AP ADAM10 CASS4 APH1B PLCG2 **INPP5D** SCIMP

CD33 5' UTR SNP is protective for AD by reducing CD33 expression Co-segregates with protective *CD33* mutation deleting exon 2 - inactivating CD33

The American Journal of Human Genetics 83, 1–10, November 7, 2008 1	
Genome-wide Association Analysis Reveals Putative Alzheimer's Disease Susceptibility Loci in Addition to APOE	CD33 gene - commor
Lars Bertram, ^{La} Christoph Lange, ^{En} Kristina Mullin, ¹ Michele Parkinson, ¹ Monica Hsiao, ¹ Meghan F. Hogan, ¹ Brit M.M. Schleide, ¹ Basavaraj Hooki, ² Jason DiVito, ¹ Iuliana Ionita, ² Hongyu Jiang ² Nan Laird, ³ Thomas Moscarillo, ⁴ Kari L. Ohlsen, ⁶ Kathryn Elliott, ⁴ Xin Wang, ⁸ Diane Hu-Lince, ⁵ Marie Ryder, ⁶ Amy Murphy, ² Steven L. Wagner, ⁶ Deborah Blacker, ^{3,4} K. David Becker, ⁶ and Rudolph E. Tanzi ^{1,4}	S
Pease offer this antide in press als Discuss et al., Abremer's Deasse Rek Gene (2010 Initials Monoplar Lipbale of Anytod Bets, Neuron (2013), http:// dx.doi.org/10.1019().neurol.2013.04.014	High CD33 microglial
Article	
Alzheimer's Disease Risk Gene CD33	
INNIDITS MICROGUIAI UDTAKE OT AMYIOID BETA Ana Gricius, ¹ Alberto Semano-Pozo, ² Antonio R. Parrado, ¹ Andrea N. Lesinski, ¹ Caroline N. Asselin, ¹ Kristina Mulin, ¹ Basawarai Hood, ¹ Se Hoon Chol, ¹ Bradley T. Hyman, ² and Radolph E. Tanz ^{1,1,1} ¹ ^{Const} Constant Aging Research Laboratory Department of Neurology, Messachusets General Hospits and Harvard Medical School. Charlestown, MA 02129, USA ¹ Correspondence: Insulfikiti, and/harvard edu	
Neuron Article	
TREM2 Acts Downstream of CD33 in Modulating Microglial Pathology in Alzheimer's Disease	4×
Ana Gricius, 'Shaun Patel,' Anthony N, Federico,' Se Hoon Choi,' Brandan J, Innes,! Mary K, Oram,' Gan Careghetti, ^{1,1} Daniele McGinty,' Anthony Anaelmo,' Ruslan I, Sadreyev,' Suzanne E, Hickman,' Joseph El Khoury,' Marco Colonna, ¹ and Rucloiph E, Tanul ^{1,1,1} Gewide and Ange Tewaret. Unit, McCarcia Center for Brain Healty, Marc General Institute for Neucodegenerative Disease, Department of	1000-5 E

usetts General Hospital and Harvard Medical School, Charlestown, MA

Center for Immunology and In 02139, USA

*Correspondence: tarof@refix.rtgh.hananit.edu https://doi.org/10.1016/j.raunot.2018.06.010

ammatory Useques, Ma

Department of Pethology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA Near Context

Modified from Stevens et al

TREM2 Regulates Microglial Activation Downstream of CD33

Knock-out of CD33 in 5XFAD decreases Aβ plaque burden and improves cognition
 Knock-out of TREM2 in 5XFAD increases Aβ plaque burden and worsens cognition
 Double CD33/TREM2 knock-out in 5XFAD mimics TREM2 knock-out in 5XFAD
 CD33/TREM2 knock-out-5XFAD transcriptome mimics TREM2 knock-out-5XFAD

Griciuc et al, Neuron, 2019

Human Microglial-Neuronal-Astrocyte 3D Tri-Culture Model of AD

(scale bar: 250um)

Human SV40

iMGL

Park et al., Nature Neurosci. 2018

3D Triculture Platform : Gel-Layered 3D Triculture in 96 Well Plate with iMGL's

3D Human Mixed Neural-Astocyte-Microglial Culture System: Drug Hits

4Ca2+ channel blockerXX6dihydroorotate dehydrogenase inhibitorX7glucocorticoid agonistX8antioxidant; lipoxygenases and glutathione S- transferase inhibitorX12OX1 antagonistX13Aryl hydrocarbon receptor antagonistX19Cdk4/cyclin D1 and CaM kinase II inhibitr; antiviralX39Cdk4/cyclin D1 and CaM kinase II inhibitorN.D.41Ieucine aminopeptidase inhibitorN.D.42aminopeptidase inhibitorX43PRAK and MAPKAP-K2 kinase inhibitorX	Compound ID	Activity	Abeta42 uptake	Cytokine reduction (Post LPA)
6dihydroorotate dehydrogenase inhibitorX7glucocorticoid agonistX8antioxidant; lipoxygenases and glutathione S- transferase inhibitorX12OX1 antagonistX15Aryl hydrocarbon receptor antagonistX19Cdk4/cyclin D1 and CaM kinase II inhibitr; antiviralX39Cdk1/cyclin D1 and CaM kinase sinhibitorN.D.41leucine aminopeptidase inhibitorN.D.42aminopeptidase inhibitorX43PRAK and MAPKAP-K2 kinase inhibitorX	4	Ca2+ channel blocker	Х	X
7glucocorticoid agonistX8antioxidant; lipoxygenases and glutathione S- transferase inhibitorX12OX1 antagonistX15Aryl hydrocarbon receptor antagonistX19Cdk4/cyclin D1 and CaM kinase II inhibitr; antiviralX39Cdk1 inhibitorX40Src-family tyrosine kinases inhibitorN.D.41leucine aminopeptidase inhibitorN.D.42aminopeptidase inhibitorX43PRAK and MAPKAP-K2 kinase inhibitorX	6	dihydroorotate dehydrogenase inhibitor		X
8antioxidant; lipoxygenases and glutathione S- transferase inhibitorX12OX1 antagonistX15Aryl hydrocarbon receptor antagonistX19Cdk4/cyclin D1 and CaM kinase II inhibitr; antiviralX39Cdk1 inhibitorX40Src-family tyrosine kinases inhibitorN.D.41leucine aminopeptidase inhibitorX42aminopeptidase inhibitorX43PRAK and MAPKAP-K2 kinase inhibitorX	7	glucocorticoid agonist		X
12OX1 antagonistX15Aryl hydrocarbon receptor antagonistX19Cdk4/cyclin D1 and CaM kinase II inhibitr; antiviralX39Cdk1 inhibitorX40Src-family tyrosine kinases inhibitorN.D.41leucine aminopeptidase inhibitorX42aminopeptidase inhibitorX45PRAK and MAPKAP-K2 kinase inhibitorX	8	antioxidant; lipoxygenases and glutathione S- transferase inhibitor		X
15Aryl hydrocarbon receptor antagonistX19Cdk4/cyclin D1 and CaM kinase II inhibitr; antiviralX39Cdk1 inhibitorX40Src-family tyrosine kinases inhibitorN.D.41leucine aminopeptidase inhibitorN.D.42aminopeptidase inhibitorX45PRAK and MAPKAP-K2 kinase inhibitorX	12	OX1 antagonist		X
19Cdk4/cyclin D1 and CaM kinase II inhibitr; antiviralX39Cdk1 inhibitorX40Src-family tyrosine kinases inhibitorN.D.41leucine aminopeptidase inhibitorN.D.X42aminopeptidase inhibitorXX45PRAK and MAPKAP-K2 kinase inhibitorXX	15	Aryl hydrocarbon receptor antagonist		X
39Cdk1 inhibitorX40Src-family tyrosine kinases inhibitorN.D.41leucine aminopeptidase inhibitorN.D.X42aminopeptidase inhibitorXX45PRAK and MAPKAP-K2 kinase inhibitorX	19	Cdk4/cyclin D1 and CaM kinase II inhibitr; antiviral		×
40Src-family tyrosine kinases inhibitorN.D.41leucine aminopeptidase inhibitorN.D.X42aminopeptidase inhibitorXX45PRAK and MAPKAP-K2 kinase inhibitorX	39	Cdk1 inhibitor	Х	
41Ieucine aminopeptidase inhibitorN.D.X42aminopeptidase inhibitorXX45PRAK and MAPKAP-K2 kinase inhibitorX	40	Src-family tyrosine kinases inhibitor	N.D.	
42aminopeptidase inhibitorXX45PRAK and MAPKAP-K2 kinase inhibitorX	41	leucine aminopeptidase inhibitor	N.D.	×
45 PRAK and MAPKAP-K2 kinase inhibitor X	42	aminopeptidase inhibitor	Х	X
	45	PRAK and MAPKAP-K2 kinase inhibitor	X	

Cromolyn converts microglial cells from a proneuroinflammatory (neurotoxic) activation state to a phagocytic (β -amyloid-clearing) activation state in Tg AD mice.

Cromolyn sodium delays disease onset and is neuroprotective in the SOD1^{G93A} Mouse Model of amyotrophic lateral sclerosis

Eric J. Granucci^{1,5}, Ana Griciuc^{2,5}, Kaly A. Mueller^{1,5}, Alexandra N. Mills¹, Hoang Le⁽²⁾, Amanda M. Dios¹, Danielle McGinty², Joao Pereira¹, David Elmaleh³, James D. Berry¹, Sabrina Paganoni^{1,4}, Merit E. Cudkowicz¹, Rudolph E. Tanzi¹² & Ghazaleh Sadri-Vakili^{1*}

Key results - Cromolyn:

- Delayed disease onset and progression
- Reduced motor deficits in the Paw Grip Endurance (PaGE) task
- Significant effect on motor symptoms as measured by age at paresis onset
- Significantly spared lumbar spinal cord motor neurons
- Reduced pro-inflammatory cytokine/chemokine levels in the spinal cord and plasma
- Preserves Neuro-Muscular-Junction integrity

Granucci et al, 2019

Phase 3 Clinical Trial of Brain-Permeable Cromolyn in AD Patients (COGNITE) – AZ Therapies*

• Cromolyn: Currently in a phase three clinical trial (COGNITE) for the treatment of mild-moderate AD (N=600 patients); Expected to read out late-2020.

Mechanisms of Action:

- 1. Reduces neuroinflammation by converting microglia from proinflammatory state to a phagocytic state
- 2. Promotes clearance of Aβ by microglia using Fc-Gamma receptor (similar to MOA of aducanumab)
- 3. Could use combination of brain-permeable cromolyn and a GSM to remove A β from the brain, but....

*R. Tanzi is Chair of SAB & Shareholder

Drug Combination Repurposing Two Small Molecules: Sodium Phenyl Butyrate and Taurursodiol aimed at preventing neuronal cell death due to neuroinflammation by protecting against endoplasmic reticulum and mitochondrial stress.

ALS Phase 2 RCT (CENTAUR N=132) – Statistically significant slowing of functional decline over 24 weeks in ALS patients, the majority of whom were also receiving riluzole, edaravone, or both. Paganoni S. et al. NEJM, 2020

> AD Phase 2 (PEGASUS N=100) – Reads Out in 2020

*R. Tanzi – Co-founder/SAB Chair & Shareholder

DEEPAK CHOPRA, M.D. RUDOLPH E TANZI, PH.D. SUPPERSONAL SUPERSONAL SUPERSONAL SUPERSONAL SUPERSONAL SUPERSONAL SUPERSONAL SUPER

> A Revolutionary New Plant Supercharge Your Instruments and Bay Well as Life

THE HEALING SELF

Deepuk Chopta MD. Rodolph F. Tanzi, mD

S-H-I-E-L-D Your Brain Against Alzheimer's

Sleep 8 Hours During deep night sleep amlyoid production is turned down. In addition to less plaque forming, the brain cleans itself out.

- Handle Stress -

Take 10 minutes a day to meditate, take a walk, or do something else that relaxes you.

Interact With Others —

Loneliness causes stress that can lead to chemical changes in the brain that kills nerve cells. Speaking with people involves nerve activity that strengthens the brain.

- Exercise -

Walking 8,000-10,000 steps per day reduces pathology leading to Alzheimer's and helps grow new nerve cells.

- Learn New Things -

Learning something new strengthens the connections between nerve cells called synapses and provides cognitive reserve.

Nathing is better for the brain than the Mediterranean diet. Fat less red meat and more fruits, puts, and vecetables

MASSACHUSETTS GENERAL HOSPITAL

HENRY AND ALLISON MCCANCE CENTER FOR BRAIN HEALTH

Lifestyle Interventions:

<u>S</u>leep

<u>Handling Stress</u>

Interactions with Others

<u>E</u>xercise

Learn New Things

<u>D</u>iet

Sleep 8 Hours During deep night sleep amlyoid production is turned down. In addition to less plaque forming, the brain cleans itself out.

- Handle Stress -

Sleep

Take 10 minutes a day to meditate, take a walk, or do something else that relaxes you.

Interact With Others —

Loneliness causes stress that can lead to chemical changes in the brain that kills nerve cells. Speaking with people involves nerve activity that strengthens the brain.

- Exercise ·

Walking 8,000-10,000 steps per day reduces pathology leading to Alzheimer's and helps grow new nerve cells.

- Learn New Things ------

Learning something new strengthens the connections between nerve cells called synapses and provides cognitive reserve.

- Diet —

Nothing is better for the brain than the Mediterranean diet. Eat less red meat and more fruits, nuts, and vegetables.

During Deep Sleep: Your Brain is Cleaned of Plaque and Other Neurotoxic Debris

During deep night sleep amlyoid production is turned down. In addition to less plaque forming, the brain cleans itself out.

- Handle Stress -

Take 10 minutes a day to meditate, take a walk, or do something else that relaxes you.

Interact With Others -

Loneliness causes stress that can lead to chemical changes in the brain that kills nerve cells. Speaking with people involves nerve activity that strengthens the brain.

Exercise

Walking 8,000-10,000 steps per day reduces pathology leading to Alzheimer's and helps grow new nerve cells.

Learn New Things -

Learning something new strengthens the connections between nerve cells called synapses and provides cognitive reserve.

- Diet

Nothing is better for the brain than the Mediterranean diet. Eat less red meat and more fruits, nuts, and vegetables. OPEN

Citation: Transl Psychiatry (2016) 6, e880; doi:10.1038/tp.2016.164 www.nature.com/tp

ORIGINAL ARTICLE

Meditation and vacation effects have an impact on disease-associated molecular phenotypes

ES Epel¹, E Puterman¹, J Lin², EH Blackburn², PY Lum³, ND Beckmann⁴, J Zhu⁴, E Lee⁴, A Gilbert¹, RA Rissman⁵, RE Tanzi⁶ and EE Schadt⁴

Handling Stress

Meditation and vacation led to beneficial changes in gene networks involved with stress response and inflammation.

A week of meditation led to increased telomerase activity and beneficial changes in Alzheimer'srelated plasma biomarkers.

Deep meditation can turn down default mode network activity, the network that promotes propagation of Alzheimer's pathology.

Sleep 8 Hours During deep night sleep amlyoid production is turned down. In addition to less plaque forming, the brain cleans itself out.

- Handle Stress -----

Take 10 minutes a day to meditate, take a walk, or do something else that relaxes you.

Interact With Others —

Loneliness causes stress that can lead to chemical changes in the brain that kills nerve cells. Speaking with people involves nerve activity that strengthens the brain.

Exercise

Walking 8,000-10,000 steps per day reduces pathology leading to Alzheimer's and helps grow new nerve cells.

– Learn New Things –

Learning something new strengthens the connections between nerve cells called synapses and provides cognitive reserve.

- Diet —

Nothing is better for the brain than the Mediterranean diet. Eat less red meat and more fruits, nuts, and vegetables.

Interaction with Others Loneliness increases risk for AD by 2-fold

Table 3. Relation of Cumulative Loneliness to Incident Alzheimer Disease (Models A and B) and Global Cognitive Decline (Models C and D)*

Madel Term	Model A RR (95% CI)	Model B RR (95% CI)	Model C Estimate (SE); P Value	Model D Estimate (SE); P Value
Cumulative ioneliness	2.10 (1.45-3.06)	1.84 (1.11-3.07)		Viteda Salata Perint
Cumulative Ioneliness	1992-1997-1997-1997-1997-1997-1997-1997-	050000000000000000000000000000000000000	-0.20 (0.03); <.01	-0.09 (0.04); .02
${\rm Gumulative Ioneliness} \times {\rm time}$			-0.03 (0.01); <.01	-0.05 (0.01); <.01

Abbreviation: CI, confidence interval: RR, relative risk; SE, standard error.

*Estimated from proportional hazards (A and B) or mixed-effects (C and D) models adjusted for age, sex, and level of educational achievement (A and C) and for social activity, social network, physical activity, cognitive activity, depressive symptoms, income, race/ethnicity, disability, and vascular risk factors and conditions (B and D).

associate.

Exercise's Benefits to Dementia Can Be Made Chemically Boosting both neurogenesis and a brain-derived growth factor can minic the cognitive benefits of exercise in a mouse mode of Attnemer's disease. there obtains time

It's possible to boost memory in these mice by inducing neurogenesis without

RESEARCH ARTICLE SUMMARY

NEURODEGENERATION

Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer's mouse model

Se Houn Chei, Enjana Bylykhushi, Zena K. Chatila, Mar W. Lee, Benjamin Pulli, Gregory D. Chemenson, Eantheo Kim, Alexander Romgala, Mary K. Oran, Caroline Asselin, Jenna Arrosson, Can Zhang, Sens J. Millev, Andren Leimfall, John W. Chen, Doo Yeon Kim, Henriette van Frang, Bresee M. Spiegdinan, Fred IE. Gage, Badolph E. Tauti?

*Finiancial Interest in Chromadex and Cognitive Clarity

Sleep 8 Hours -

During deep night sleep anlyoid production is turned down. In addition to less plaque forming, the brain cleans itself out.

- Handle Stress ----

Take 10 minutes a day to meditate, take a walk, or do something else that relaxes you.

Interact With Others

Loneliness causes stress that can lead to chemical changes in the brain that kills nerve cells. Speaking with people involves nerve activity that strengthens the brain.

- Exercise -

Walking 8,000-10,000 steps per day reduces pathology leading to Alzheimer's **Exercise**

Learn New Things —

Learning something new strengthens the connections between nerve cells called synapses and provides cognitive reserve.

- Diet -

Nothing is better for the brain than the Mediterranean diet. Eat less red meat and more fruits, nuts, and vegetables.

- Sleep 8 Hours -

During deep night sleep amlyoid production is turned down. In addition to less plaque forming, the brain cleans itself out.

- Handle Stress ----

Take 10 minutes a day to meditate, take a walk, or do something else that relaxes you.

Interact With Others —

Loneliness causes stress that can lead to chemical changes in the brain that kills nerve cells. Speaking with people involves nerve activity that strengthens the brain.

- Exercise -

Walking 8,000-10,000 steps per day reduces pathology leading to Alzheimer's and helps grow new nerve cells.

- Learn New Things ------

Learning something new strengthens the connections between nerve cells called synapses and provides cognitive reserve.

- Diet -

Nothing is better for the brain than the Mediterranean diet. Eat less red meat and more fruits, nuts, and vegetables.

Learn New Things

Degree of Dementia in Alzheimer's Disease Correlates Most Closely with Synapse Loss

Build Your Synaptic Reserve Everyday

– Sleep 8 Hours –

During deep night sleep amlyoid production is turned down. In addition to less plaque forming, the brain cleans itself out.

- Handle Stress -

Take 10 minutes a day to meditate, take a walk, or do something else that relaxes you.

- Interact With Others -

Loneliness causes stress that can lead to chemical changes in the brain that kills nerve cells. Speaking with people involves nerve activity that strengthens the brain.

Exercise -

Walking 8,000-10,000 steps per day reduces pathology leading to Alzheimer's and helps grow new nerve cells.

Learn New Things -

Learning something new strengthens the connections between nerve cells called synapses and provides cognitive reserve.

- Diet —

Nothing is better for the brain than the Mediterranean diet. Eat less red meat and more fruits, nuts, and vegetables.

<u>Diet</u>

Severe Gut Dysbiosis in AD Patients

Add more organic antiinflammatory food to your groceries, e.g. fruits, vegetables, leafy greens

Increase plant fiber (whole grains) – prebiotics keep gut microbiome happy

Probiotic supplement or priobiotic foods – yogurt, kefir, etc

McCance Center for Brain Health

- 1. Identify and study the indicators of brain health
- 2. Discover and develop lifestyle interventions that prevent brain disease and improve brain function
- 3. Catalyze a borderless community of knowledge and tools for integrating these indicators and interventions into primary care

To End Alzheimer's disease, we need a cocktail !

Right Patient, Right Pathology, Right Drug, Right Time And The "SHIELD" Lifestyle

- Patient Treatment Now (Secondary Prevention): Neuroinflammation
- Secondary Prevention: β -Amyloid Deposition and Tangles
- *Primary Prevention*: Lifelong (Sub-Clinical) Brain infections?

During deep night sleep amlyoid production is turned down. In addition to less plaque forming, the brain cleans itself out.

– Handle Stress –

Take 10 minutes a day to meditate, take a walk, or do something else that relaxes you.

Interact With Others -

Loneliness causes stress that can lead to chemical changes in the brain that kills nerve cells. Speaking with people involves nerve activity that strengthens the brain.

- Exercise -

Walking 8,000-10,000 steps per day reduces pathology leading to Alzheimer's and helps grow new nerve cells.

Learn New Things ------

Learning something new strengthens the connections between nerve cells called synapses and provides cognitive reserve.

Diet -

Nothing is better for the brain than the Mediterranean diet. Eat less red meat and more fruits, nuts, and vegetables.

O.

newyorkermag A cartoon by Roz Chast, from this week's issue. Follow @newyorkercartoons for more #TNYcartoons.

Sleep More Meditate More See Family and Friends More Move More Learn More Eat Better Choose Your Ancestors Wisely

MGH Genetics and Aging Research Unit:

D. Kovacs, PhD	R. Moir, PhD
A. Li, MD, PhD	D.Y. Kim, PhD
S.S. Kwak, PhD	C. D'Avanzo, PhD
N. Kumar, PhD	T. Cheng, MD
Y. Wan MD	X. Shen MD
D. Romano, BS	K. Washicosky. BS
C. Echmalian, BS	M. Oram, BS
R. Fenn, BS	D. Von Maydell, BS
E. Ketema BS	T. Mitchell, BS

Collaborators:

L. Bertram, MD (U. Luebeck) C. Lange, PhD (HSPH) W. Hide, PhD (Sheffield) S. Wagner, PhD (UCSD) S. Sisodia (U. Chicago) M. Colonna (Wash U. St. Louis) D. Holtzman (Wash U. St. Louis) B. Vassar (Northwestern) B. Zlokovic (USC) Z. Kovacs, PhD (U. Brescia) B. Hyman, MD, PhD (MGH) C. Woolf Ph.D. (MGH) W. Xia, PhD (Boston VA) H. Cho (UNC-CH) S. Wong, Ph.D. (Houston Methodist) **B. Spiegleman (Harvard)** H. Zoghbi (Baylor)

W. Wasco PhD
S.H. Choi, PhD
L. Quinti, PhD
M. Cheng, PhD
Y. Jing MD
E. Ebylykbash, BS
A. Rompala, BS
A. Forte, BS
A. Rodriguez BS

J. Suh, PhD
A Griciuc, PhD
D. Kumar, PhD
J. Bae, PhD
J. Yan MD
A. Federico, BS
EH Kim, Ph.D.
L. Long, BS
D. Prokopenko, PhD

Open Philanthropy Project

26

Good Ventures

National Institute ■ + * * on Aging