Part I

MMI Sept 2020 – Virtual Covid -19 The Essentials of Neuro-immuno-endopsychopharmacology and Neuroimaging:

A Modern Neuroscience Approach to Understanding and treating the Child and Adult Brain in Clinical Practice

Part I

Elizabeth A. Stuller, M.D. ABPN Board Certified in Adult and Addiction Psychiatry FAPA, FASAM

The Brain – The Final Frontier

THE BRAIN INITIATIVE

National Institutes of Health

Advancements in Neuroimaging

X-Ray

Black and White TV

Brain CT Scan

Brain MRI

Brain CT

Functional MRI

PET Imaging

Images of Mind

Generating Verbs

> Speaking Words

> > Hearing Words

> > > Seeing Words

O John W. Haller, Washington Tensorally School of Medicane

PET Imaging

12

Tensor Diffusion Imaging

Tensor Diffusion Imaging Becoming Super Brain Assessment Tool

Neuroimaging and the Future of Brain Cartography

Cartography is the study and practice of making maps. Combining science, aesthetics, and technique, cartography builds on the premise that reality can be modeled in ways that communicate spatial information effectively. Wikipedia

MRI allows to track many different aspects of the brains structure and dynamics in increasingly high resolution. Foto: Forschungszentrum Jülich 15

Imaging Dopamine

Foreword by Arvid Carlsson

Alzheimer's & Anti-Aging Imaging

Quantitative MRIs

atient ID:	Patient Name:	Sep	k: Age: 79
ccession Number:	Referring Physician:		am Date:
ORPHOMETRY RESU	LTS	1	
MORPHOMETRY RESU	ILTS		
THE REAL	A NO	KXKA (
12m	3	9 63	
5.5.	2. A.M.	100 A 100 A	ALC: NO
A7.04	1		United and
		TRACE IN A DATE	10 TE 10 - 6-
Hippocampal Occupancy	From (HOC)	0.41	SP IN SUCC
Brain Structure	Volume (cm*)	All of YOM	Normative Percentile
Hippocampi	4.49	(5%-95% Normative Percentile) 0.23 (0.32 - 0.46)	1
Superior Lateral Ventricle		6.56 (1.85 - 4.98)	99
Inferior Lateral Ventricle		0.34 (0.13 - 0.29)	99
AGE-MATCHED REFER		0.54(0.15-0.25)	71
AGE-MATCHED REFER	ENCE CHARIS		
L & R Hippocany	LARP	Hippocampel Occupancy L.	6 R Inferior Lateral Ventzicle
	1.		
	0.0	14	
44			
83			
and the second se		Ş.	11.
41 		and the second se	
A 100 - 100		And	
		And	- Alexandra
A 100 - 100	In State		
		1111	

HIPPOCAMPAL ASYMMETRY REPORT >

TRIAGE BRAIN ATROPHY REPORT >

Evolution of Neuroimaging in AD

- **Computed Tomography** •
- MRI ٠
- Volumetric MRI
- **Functional MRI** •
- **FDG Glucose PET** ٠
- **Amyloid Imaging** ٠

Brain Maps: Alzheimer's Disease Spreading

6 months later

18 months later

http://www.ultfocum.org/new/det

Lab of Neuro Imaging UCLA School of Medicine, www.lon.ucla.edu/"thompton/AD-4D/dynamic.html

PET scans reveal key details of Alzheimer's protein growth in aging brains

Global Positioning System - GPS

A la carte

This is your brain on music

Mapping monaul autisity remains that manie strenalizes the finite on the same way find, see and dragt do

BY STRUCK FOR ADD STREAMSTN SHIETS

4 BRABING, MUSIC: The malitary comes (1) is organized in hardes of standad the gometries, with some only responding to ince the parential and anticats to logit. Myoting from the invite prart of the correspondent and the particle, atthenant bits of an algories nate place. In the part, have reasonal elements, with an princh and volume, are analyzed, while surrounding regions present more complex elements, such as timbre, mailely and cliption.

REACTING ENDITIONALLY TO MUSIC: What you get a

A DRAGING MILLING, TRAVING TRADING TARAFA AND AND In your head obsolutes the college particle over Namph you are not actually bearing the term. The activity basels many is shall decree more (7) and to a loting share they if you work actually following The interior fractile price (2) batefy to be associated unit pervising memory in and in the entropy of a part that "New I would be adopt and American Balture (for Burnalainial Southal ------expectation for handling the array is associate research while a la basing pragentia

PLATING MUSIC few activities one mure of the brane that phaying munic. It requires complex feathack systems that take in information, such as prints and multicity, through the melliony cortes (1) and allow the performer to adjust his or has playing. The shash cortex (2) is arithmed by reaching -or next imagining - a core, the particlal later (3) is involved in a sumber of preverees, including computation of Reager perificency the exister carites (4) halast savetral body manemercia; the sonary optics (3) is climitating with path leads of the instrument; the pre-motor area (4) remains revisewhat managements but hadja perform passaments in the Lorent writer and time; the frantal later (7) plans and secondinates the overall activity, and the cereballant (9) helps mester smooth, whap and successpoly.

Alls op your tplot singing the humand authors? had your live must in more when you have ADDA's Durning Queyer? Data prog heart totalide when you have show formulate love using? Sharpoone care sums a target of their shall sales that month. While permited expermoves dopt mouth have, a justice on Harrison of the all ine the same back beam mouth to proceep panel

"Environme properties on manic," nets Robert Zanom, y ... supplication of the Mantenal Supervisional Distances of MaColl. University what implicit music's impact on the brace. "So done must be methodising in our boards that predistrates on up it."

Long MRI respects sensence roughly and FET (pertion employed annuagesplicit, to immine have subgest the Solars a state of voluments (seeing w-st playing must) and have based that the loads manufally professes that an apply one. Facilit Assessments in an endowing but a testing or Passaport, New . where haven as industries, or would be into manying Conversion I was kindly an on-barrie) full second the tota of such termsnext to Billion in ballon and designed "Who have a next of

Ad Constants Line & Adda on Adda and Adda

meaning of independents large accesses," mary Lancest, "Is in the mainted animory that yields overall persons.

This tenanth is helping to trend the port of interest dyshere used and the factilit's adaptechers to playing mass. About one ina headard mourtane rolling hour a boad dymona. For reample, athen non-Report builts to make sugerhar as if privat. In visitanext the passion of the mission courses that concrude the faint impres of day left faind, which do point of the work, where is he untargent. This adoptation helps the earliest ping better, but not centres have lineared that and stread president and recommendly load ne comband signals in the books As a weak, the semilivistic conins harpy make the real-digits independently.

But playing the ecception second the excitation that second its a beam adder the inflations of stants has second broadst good. It seems the way for possing participation of brain disorders. "In taking diamages sugh as Walkainen's, we send as address a glad professionly of the lease system," new Louise "#4 and many second houses in hims have planets over a house present State in Bagonia to bone."

otiver up your spine datasting to a place of muck, the "reward" structures doug in your mid-brain, such as the thalarms (1). sentral expression area (2); scikiliptional series (3) and antarile impaire (4) are long combined. These are note of the same sincers that are environmed when a herrory periode mate, when an account person has see or when a drug Addin't security installeys. If you find a song pleasant, activity in the ampropriate [3] is installational. This part all the brack in typically munchaber) with respectes smarthall, marth as bear

Your Brain on Music

Sex Addiction

fMRI Scans Reveals How "Magic Mushrooms" Inflict Psychedelic Effect On The Brain

THE BRAIN INITIATIVE

BRAININITIATIVE.ORG

NEUROIMAGING

Edited by Peter Bright

BRAIN

RESEARCH PRIORITY AREAS

2013: - Obama announces BRAIN Initiative.

- Initiative

long-term

vision and

research

priorities.

establishes

- NIH, NSF, and DARPA commit \$100M for

2014.

ORAIN INITIATIVE TIMELING ORAIN new tools and technologies

- \$500M per year funding period for application of new tools to study of

1) Brain Cell Types

- Identify the many different cells that comprise the brain and determine their functions

FEDERAL PARTNERS

Development of new tools and techniques

Rehabilitation of warfighters and civilians

Cognition and computation in the brain

Fundamental biology and technology development

Regulation of

and findings of other priority areas for a comprehensive understanding of brain function

7) Integrated

Approaches

- Combine the tools

2) Tools for Circuit

- Map connections

between nerve cells to

Diagrams

define neural

circuits within

the brain

6) Human Neuroscience - Study the human brain and work toward treatments for disorders

3) Technology to **Monitor Neural Activity**

- Monitor activity of individual nerve cells and neural circuits over the breadth of the entire brain simultaneously

4) Precise **Interventional Tools**

- Determine the role of different neural circuits in behavior by targeted manipulation

5) Theory and Data **Analysis Tools**

- Develop new methods to work with data acquired during study of the brain

Decade of the Mind

• Success will require research that reaches across disparate fields such as:

- Cognitive science
- Medicine neuroscience
- Psychology,
- Mathematics
- Engineering,
- Neurotechnology
- Computer science

Additional important insights will need to come from areas as diverse as :

- Systems biology,
- Cultural anthropology
- Social science
- Robotics
- Automation technology

The Human Connectome Project HCP

Cartographers of the Brain: Mapping the Connectome

CARTOGRAPHERS OF THE BRAIN: MAPPING THE CONNECTOME 54:37

The Human Connectome

Anatomy

Klingler's method for fiber tract dissection uses freezing of brain matter to spread nerve fibers apart. Afterwards, tissue is carefully scratched away to reveal a relief-like surface in which the desired nerve tracts are naturally surrounded by their anatomical brain areas.

Connectome

Shown are the connections of brain regions together with "hubs" that connect signals among different brain areas and a central "core" or backbone of connections, which relays commands for our thoughts and behaviors.

Neuronal Pathways

A new MRI technique called diffusion spectrum imaging (DSI) analyzes how water molecules move along nerve fibers. DSI can show a brain's major neuron pathways and will help neurologists relate structure to function.

Connectome Computation

Connectome Computation

How a Fly Brain Detects Motion - MIT Technology Review

A reconstruction of 379 neurons involved in motion detection in the fruit fly.

By mapping the brain structure in such detail, the researchers gained new insight into how the brain detects movement. Their work is the latest example of many ongoing efforts in neuroscience to understand how the brain functions by building intricate diagrams of neuronal connections, or connectomes

Computational Analaysis (Modeling and Predicting Human Behavior)

Computational Complexity and Human Decision-Making Trends in Cognitive Neuroscience

OPINION | VOLUME 21, ISSUE 12, P917-929, DECEMBER 01, 2017

Elon Musk – Neuralink

The entrepreneur and <u>Tesla</u> founder unveiled the new design of the chip, as well as the full-scale surgical robot and a group of pig test subjects.

Elon Musk unveils updated Neuralink brain implant design and surgical robot

The robot pictured above has neuro-surgically inserted the chip into several pigs.

Visual to your left shows tiny EEG readings of real time activity in the brain. Neuralink received a Breakthrough Device Designation from the FDA in July. The startup is now preparing for its first human implantation, pending required approvals and further safety testing.

Elon Musk's neuroscience startup Neuralink has revealed the "dramatically simplified" design for an implant that aims to create <u>brain-to-machine</u> interfaces.

Neuralink is developing to connect <u>human brains</u> with computer interfaces via artificial intelligence.

The Neuralink has been simplified from a device behind the ear to one on top of the skull

Elon Musk – Neuralink

- The coin-sized chip would enable humans to control technology with their mind
- "It's kind of like a FitBit in your skull," said Elon Musk.
- The surgical robot is designed to be "comforting" for patients
- The implant could allegedly solve neurological disorders
- Musk also showed a pig that previously had a chip inserted into its brain, but had since been removed, to show that the procedure is reversible without any serious side-effects.

Mapping Neuroplasticity ?

An astonishing new science called "neuroplasticity" is overthrowing the centuries-old notion that the human brain is immutable. - <u>Norman Doidge, M.D.,</u> Psychiatrist and Psychoanalyst

neu·ro·plas·tic·i·ty

/ˌn(y)oorōˌplaˈstisədē/

noun

 The brain's ability to reorganize itself by forming new neural connections throughout life... in response to new situations or to changes in [the] environment.

Neuroplasticity

The Backwards Brain Bicycle - Smarter Every Day 133 - YouTube YouTube · SmarterEveryDay

Neuro-immuno-endo-psychopharmacology

ADHD

DEPRESSION

ANXIETY

Depression

Panic

Insomnia

How Do You Know, Unless You Look?

Single-Photon Emission Computer Tomography

AVERAGE SCAN TIME – 15-20 MINUTES

Shiny Eyes

The Developing Pre-Frontal Cortex

Why do most 16-year-olds drive like they're missing a part of their brain?

BECAUSE THEY ARE.

EVEN REIGHT, MATURE TRENAGERS SOMETIMES DO THENGS TRAY ARE "STUPID"

But when that happens, it's not really their fault. It's because their brain ham't finished developing. The underdeveloped area is called the dornal lateral prefrontal cortex. It plays a critical role in decision making, problem solving and understanding future consequences of wedge's actions. Problem is, it won't be fully mature until they're into their 20s.

If a one reason 16-sear-old drivers have crash rates there times higher than 17-year-olds and five times higher crashes. These laws restrict the more dangerous kinck of driving teems do, such as nightfime driving and driving with new passengers. Since North Carolina implemented one of the most comprehensive GDL laws in the country, it has seen a 25% decline in crashes involving 10-rene-olda.

To find out what the GDL laws are in your state, visit Alletate.com/teen. Help enforce themand if they aren't strong enough, ask your legislator to strengthen them.

Let's help our teenagers not man out on tomorrow just

Time-Lapse Brain

m Gray matter wants as the brain matures. Here 15 years of brain development are compressed into five images, showing a shift from red (least mature) to blue.

Visual Motivation

shutterstock.com · 102981386

Marijuana

The Young and Impaired Prefrontal Cortex

treatment...is progressive...and can result in disability or

http://www.asam.org/advocacy/find-a-policy-statement/view-policy-statement/public-policy-statements/2011/12/15/the-definition-of-addiction

Smoking and Drinking with "Informed Consent"

Traumatic Brain Injury and Behavioral Manifestations

BASED ON A TRUE STORY CONCUSSION EVEN LEGENDS NEED A HERO

PG-13

CHRISTMAS

Prefrontal Cortex Injuries

Why Don't Woodpeckers Get Headaches?

The hyoid bone, located in the bird's cranium, secures and diverts vibrational forces away from the brain.

Lipton and colleagues studied 37 young, healthy, amateur soccer players who headed the ball between as few as 32 and as many as 5,400 times during the preceding 10-month season.

Neuroradiology Soccer Heading Is Associated with White Matter Microstructural and Cognitive Abnormalities Michael L. Lipton, MD, PhD, et al September 2013 Volume 268, Issue 3 **Repetitive subconcussive head trauma** in the setting of heading during soccer may be associated with white matter microstructural and neurocognitive changes similar to those seen in patients with traumatic brain injury.

Neuroradiology Soccer Heading Is Associated with White Matter Microstructural and Cognitive Abnormalities Michael L. Lipton, MD, PhD, et al September 2013 Volume 268, Issue 3

Injury Location and Behavior

ADD / ADHD

IMAGES OF HUMAN BEHAVIOR

Rest, Concentration & Concentration with Medication

undersurface view, rest mild decrease prefrontal area

undersurface view, concentration marked decrease prefrontal cortexand left temporal lobe

Images of Attention Deficit Disorder

undersurface view, w/Adderall overall marked improved activity

www.amenclinics.com Dr. Daniel Amen, MD **Executive Function** Decision Making Impulse Control ADHD/ADD

NE, Dopamine, PEA Caffeine, Nicotine

Pre Frontal Cortex (PFC)

- Procrastination
- Picking a Fight

Treatment Considerations Traditional:

• Stimilants

Alternative:

- L-Tyrosine
- PEA
- Muccana Pruriens

Normal brain

ADD brain before treatment

ADD brain after treatment (Rx Stilmulant

www.amenclinics.com Dr. Daniel Amen, MD

Treatment Order Matters

IMAGES OF HUMAN BEHAVIOR

Rest, Concentration & Concentration with Medication

undersurface view, rest mild decrease prefrontal area

undersurface view, concentration marked decrease prefrontal cortexand left temporal lobe

undersurface view, wiAdderoll overall marked improved activity

12:2

Images of Attention Deficit Disorder

Pay Attention to Your Patients Drug of Choice

Thalamus (Depression)

Thalamus (Depression)

Traditional

- TCA
- SSRI

Alternative:

- L-Tryptophan
- T-HTP

Basal Ganglia (ANXIETY)

Cannabis r

Basal Ganglia (Anxiety) Consider GABAergic, Taurine, and/or Anti-Glutamatergic

2 ENGLISH D MATH C-HISTORY Dt SPANISH F 88

SOURCE: National Highway Traffic Safety Administration, Fatality Analysis Reporting System (FARS), 2006-2011 and Colorado Department of Transportation 2012-2017

https://www.stopdruggeddriving.org/problem

Cingulate Gyrus

Cingulate Gyrus Problems

- Cognitive Inflexibility
- OCD
- Hoarding
- Rigidity
- Addictions
- ODD
- PTSD
- Vigilance
- Holding a Grudge
- Gambling
- Road Rage

Pathological Gambling

top down active view

front on active view

side active view

marked increased anterior cingulate activity

Impulsive Gambling

Road Rage

Impulsive

Cingulate Gyrus

Target with Serotonergic Drug or Supplement as the "Gear Shifter"

Depression, Anxiety, OCD, PTSD

Depression, Anxiety, OCD, PTSD The Diamond Pattern

Temporal Lobe

Memory

Choline

Dopamine

Mood / Temper

GABA

Glutamate Dopamine

Mood Stabilizer

Psychosis Dopamine Glutamate Antipsychotic

Firestorms of the Brain The Use of Neuroimaging in Court

No Alcohol

top-down active view ring of fire pattern

Alcohol Intoxicated State

top-down active view overall dampening effect on the brain still increased cingulate activity

underside surface view good overall activity without alcohol

underside surface view marked decreased in temporal lobes (tendencies toward aggression), marked decreased prefrontal cortex (no internal supervision)

Firestorms of the Brain The Use of Neuroimaging in Court

Violent Behavior

TRIAD:

Decreased Prefrontal Cortex Activity (Impulsivity) Abnormal Left Temporal Lobe (Agression) Overactive Cingulate Gyrus (Vigilience, OCD, planned executed attack)

ADD and Depression and Potential Mood Disorder (Bipolar)

Consider Mood Stabilizer and later SNRI and or stimulant cautiously

Recognizing Neurotransmitter Patterns

Norepinephrine

Dopamine

Epinephrine

Serotonin

The medical literature, as well as a wealth of clinical observation, continues to support the use of urine in testing for neurotransmitter levels and guiding therapies designed to bring balance to the nervous system.

Epinephrine RO Result			Collected	Nonal Baasa
	a		3:10PM	– Normal Range – Day: 7-12
5.8 Low	0 7 12	25	6/2/2011	Night: 4-6
Norepinephrine Ro Result			Collected	Manual Danas
				– Normal Range –
17.2 Low	0 30 45	100	3:10PM 6/2/2011	Day: 30-45 Night: 15-23
Dopamine RO Result			Collected	– Normal Range –
	1000		3:10PM	Day: 115-175
58.7 Low	0 115 176	450	6/2/2011	Night: 75-120
DOPAC RO				
Result				– Normal Range –
719.2 Low	0 790 1560	3000	3:10PM 6/2/2011	Day: 790-1,560 Night: 530-930
Serotonin RD			Collogiad	Normal Dagas
Result	3			 Normal Range — Day: 120-185
70.6 Low	0 120 185	450	3:10PM 6/2/2011	Night: 100-150
5-HIAA RO			Collected	Manual Danas
Result		24		 Normal Range — Day: 2,100-5,000
1,305.0 Low	0 2100 5000	7500	3:10PM 6/2/2011	Night: 2,000-3,300
Glycine RO			Colleged and	No. of Deces
Result	<u> </u>			 Normal Range — Day: 455-980
348.8 Low	0 455 980	2500	3:10PM 6/2/2011	Night: 390-750
Taurine RO Result			Collected — Normal Range —	
98.0 Low	H		3:10PM	
98.0 LOW	000 540	2400	6/2/2011	Day: 100-540 Night: 65-360
GABA RO				
			3:10PM	Day: 4.7-7.0
3.9 Low	0 4.7 7	18	6/2/2011	Night: 3.8-5.7
Glutamate R0				
Result				— Normal Range —
10.2 Low	0 15 32	100	3:10PM 6/2/2011	Day: 15-32 Night: 12-22
PEA RO				March Martin
Result			Collected	
12.5 Low	0 30 70	200	3:10PM 6/2/2011	Day: 30-70 Night: 20-40
Histamine RO				
				- Normal Range -
6.5 Low	0 14 24	75	3:10PM 6/2/2011	Day: 14-24 Night: 8-14

Excitatory and Inhibitory Neurotransmitters

Excitatory

- Epinephrine
- Norepinephrine
- Dopamine
- •Glutamate
- •PEA
- •Histamine

Inhibitory

- Serotonin
- •Glycine
- •Taurine
- •GABA
Treble – Excitatory

Norepinephrine **Epinephrine Dopamine** Glutamate

BASE - Inhibitory - Calming

- GABA
- Serotonin
- Glycine

Treble – Excitatory BASE - Inhibitory - Calming

Anterior Cingulate Serotonin

Basal Ganglia GABA

Prefrontal Cortex

NE Dopamine PEA

Thalamic - Limbic

L-Tryptophan 5-HTP Serotonin Melatonin SAMe

Think of EPI/NE as stimulant

Irritability, Hostility

Epinephrine / Norepinephrine

Brain Fog, Fatigue

GABA

Anxiety, Panic, Fear

Think of GABA as calming

Alcohol metabolizes into GABA

Progesterone metabolizes into GABA

Divalproex sodium metabolizes into GABA

Irritability, Insomnia, Hypomania, Road Rage

SEROTONIN

Depression, Anxiety, Sleep Disruption, Anhedonia, Lack of Joy, Amotivation,

Serotonin

S. Row

Manipulating Neurotransmitters The Food Industry

Serotonin

Caffeine and Chocolate (PEA)

Why Metabolites ? Serotonin

MAO – A

5HIAA

Agitation, Aggression, Paranoia, Psychosis

Dopamine

Anhedonia, Lack of Joy, Amotivation

Why Metabolites ?

Dopamine

MAO – B

Dopamine

339.5 (H) 0

03/19/2012 (7:00AM)

106 - 191

64 - 261

µg/gCr

Dopamine and Psychosis

Biomarkers guide treatment interventions

NE = Low

Dopamine = Low

Serotonin = Low

Intervention Choices:

SNRI Amino Acid Substrates (5-HTP, L-Tyrosine)

Likely Drug of Choice: Cocaine, Meth (NE and Dopamine) NE = High

Dopamine = High

Serotonin = Low

Intervention Choices: SSRI Amino Acid Substrate (5-HTP)

Likely Drug of Choice: Ecstasy (Serotonin)

Observed clinical patterns

Low Serotonin – enjoys ecstasy Low GABA – enjoys alcohol and benzodiazepines Low PEA, NE, Dopamine– enjoys or abuses stimulants High Dopamine – enjoys benzodiazepams **High Taurine – metabolic/detox/ CBS genetic issues** High Norepinephrine and Low Epinephrine – patient needs SAMe as cofactor Low Serotonin and High 5-HIAA – patient will need 5HTP or SSRI repletion Very Low Serotonin – Start with L-tryptophan first to gently upregulate serotonin receptors then later change to 5HTP High Dopamine and Low Serotonin – increasing Serotonin will lower Dopamine High Dopamine and High Serotonin – must use antipsychotic to lower dopamine

Everything low...

Neurotransmitters

Unit	Reference Range	Inter-Quintile Range	Collected	sult	97.5%	80%	20%	2.5%	
µg/gq	57 - 306	99 - 203	03/20/2012 (10:05AH)	2.2 (L)					Serotonin
µMol/gC	2.4 + 12.7	3.9 - 7.9	03/20/2012 (10:05AM)	1.6 (L)					GABA
µMol/gE	52 - 1025	156 - 535	03/20/2012 (10:05AM)	5.5 (L)					Taurine
µMol/gC	182 - 2225	441 - 1256	03/20/2012 (10:05AH)	9.0 (L)					Glycine
µMal/gC	6.9 - 71.8	13.5 + 36.8	03/06/2012 (7:30AM)	9.6 (L)					Glutamate
hB\B(4 - 71	10 - 32	03/20/2012 (10:0544)	4.6 (L)					Histamine
nMol/gC	15 - 167	29 - 83	03/20/2012 (10:05AM)	6.6 (L)					PEA
hā\āc	6-5 - 261	106 - 191	63/20/2012 (10:05AM)	4.0 (L)					Dopamine
µg∕gQ	100 - 2100	300 - 1000	03/20/2012 (10:05AM)	0.0 (L)					DOPAC
µg/gC	19 - 76	28-51	03/20/2012 (10:05AM)	2.5 (L)					Norepinephrine
pg/gC	4.7 - 20.8	7.1 - 13.6	03/20/2012 (10:05AM)	3.2 (L)					Epinephrine

Red or light red bars indicate results out of Inter-Quintile Range.

Inter-Quintile Range is defined as the 60th percentile.

Reference Range as the 95th percentile.

... drug of choice – Stimulants (Cocaine, Methamphetamines, Adderall)

Everything high...

Neurotransmitters

	2.5%	20%	80%	97.5%	Result	ł.	Collected	Inter-Quintile Range	Reference Range	Units
Serotonin					1,292.0	(H)	03/19/2012 (7:00AM)	99 - 203	57 - 306	µg/gCr
GABA					12.9	(H)	03/19/2012 (7:00AM)	3.9 - 7.9	2.4 - 12.7	µMol/gCr
Glutamate					79.7	(H)	03/19/2012 (7:00AM)	13.5 - 36.8	6.9 - 71.8	µMol/gCr
Histamine					56. <mark>0</mark>	(H)	03/19/2012 (7:00AM)	10 - 32	4 - 71	µg/gCr
PEA					89.0	(H)	03/19/2012 (7:00AM)	29 - 83	15 - 167	nMol/gCr
Dopamine					339.5	(H)	03/19/2012 (7:00AM)	106 - 191	64 - 261	µg/gCr
Norepinephrine					86.7	(H)	03/19/2012 (7:00AM)	28 - 51	19 - 76	µg/gCr
Epinephrine					22.3	(H)	03/19/2012 (7:00AM)	7,1 - 13.6	4.7 - 20.8	µg/gCr
THE OF A DEPOSIT	_								프로그 아이에는 것이 좋는 것이는 아이들을 것 같아.	

Red or light red bars indicate results out of Inter-Quintile Range.

Inter-Quintile Range is defined as the 60th percentile.

Reference Range as the 95th percentile.

... drug of choice – Sedatives (alcohol, benzodiazepams, opioids)

Neuro-immuno-endo-psychopharmacology

Neuropsychiatric conditions are <u>Spectrum Conditions</u> that can result from imbalances in multiple neuro-endo-immune messenger systems

Recognizing Inflammation through NT testing: <u>Elevated Histamine and the 3 - G's</u>

Neurotransmitters

	2.5%	20%	80%	97.5%	Result	
Serotonin					179.5	
5-HIAA					4,359.6	
GABA					8.8	(H
Taurine					187.4	
Glycine					2,369.1	(H
Glutamate					50.2	(H
Histamine					102.2	(H
PEA					103.8	(H
Dopamine					525.8	(H
DOPAC					1,665.3	(H
Norepinephrine				-	133.6	(H
Epinephrine					23.3	(H

The Inflamed Brain

Surface SPECT

At Rest

Concentration

SUB CORTICOL SPECT IMAGING

at rest

concentration

Glutamate & Increased Histamine In Excess = Neuroexcitotoxic

Depression: the Inflammation-Serotonin link

Adapted from Dantzer R et al. (2008). Nat Rev Neurosci. 9(1):46-569:46-57.

How can inflammation lead to clinical symptoms?

Neuro-immuno-endo-psychopharmacology

HPA Stress Response

Cortisol Graph

Acute Inflammation Histamine and the 3 G's

Neurotransmitters

Cortisol and PTSD

October 16, 2012 | By: Khalil A. Cassimally

Aa Aa Aa Fukushima Dogs Had Symptoms Comparable To Post-traumatic Stress Disorder

Lowering High Cortisol Levels

Neurotransmitters

Biomarkers for transitional inflammation

Neurotransmitters

The Vampires VS The Humans

Elevating Low Cortisol Levels

Rhodiola Rosea Ashwagandha Licorice Root Holy Basil

Biomarkers for chronic inflammation

Neurotransmitters

Saliva

Two <u>"Weak"</u> Vacation

Hippocampus – learning and memory

Untreated Depression , Addiction , Diabetes , PTSD, Alzheimer's disease can <u>Decrease</u> Hippocampal Volume (↓ Memory and Learning)

Physician Suicide

- Suicide generally is caused by the convergence of multiple risk factors — the most common being untreated or inadequately managed mental health conditions.
- Among physicians, risk for suicide increases when mental health conditions go unaddressed, and self-medication occurs as a way to address anxiety, insomnia or other distressing symptoms. Although self-medicating, mainly with prescription medications, may reduce some symptoms, the underlying health problem is not effectively treated. This can lead to a tragic outcome.
- Drivers of burnout include workload, work inefficiency, lack of autonomy and meaning in work, and work-home conflict.

American Foundation for Suicide Prevention

On average, there are 129 suicides per day.

• USA Homicide 2017 – 17, 284

• USA Suicides 2017 – 47,173

Acute Inflammation Histamine and the 3 G's

Neurotransmitters

Therefore Treat Early

Find the Root Cause of Inflammation

22 Y/O Male with Food Sensitivities and Chronic Drug Use

Neurotransmitters

	2.5%	20%	<mark>80%</mark>	97.5%	Result		Collected	Inter-Quintile Range	Reference Range	Units
Serotonin					382.2	(H)	04/06/2012 (7:40AM)	99 - 203	57 - 306	µg/gCr
GABA					6.7		04/06/2012 (7:40AM)	3.9 - 7.9	2.4 - 12.7	µMol/gCr
Glycine					1, <mark>599.4</mark>	(H)	04/06/2012 (7:40AM)	441 - 1258	182 - 2225	µMol/gCr
Glutamate					107.4	(Ĥ)	04/06/2012 (7:40AM)	13.5 - 36.8	6.9 - 71.8	µMol/gCr
Histamine					75.3	(H)	04/06/2012 (7:40AM)	10 - 32	4 - 71	µg/gCr
PEA					153.2	(H)	04/06/2012 (7:40AM)	29 - 83	15 - 167	nMol/gCr
Dopamine					441.6	(H)	04/06/2012 (7:40AM)	106 - <mark>1</mark> 91	64 - 261	µg/gCr
Norepinephrine			hi Ju		110.5	(H)	04/06/2012 (7:40AM)	28 - 51	19 - 76	µg/gCr
Epinephrine					27.4	(H)	04/06/2012 (7:40AM)	7.1 - 13.6	4.7 - 20.8	µg/gCr

Red or light red bars indicate results out of Inter-Quintile Range.

Inter-Quintile Range is defined as the 60th percentile, Reference Range as the 95th percentile.

Hadjivassi R et al. (2004). *Trends in Immunology* 11:578-582.

The Brain in Your Gut

The gut's brain, known as the enteric nervous system, is located in sheaths of tissue lining the esophagus, stomach, small intestine and colon.

SMALL INTESTINE CROSS SECTION

Submucosal plexus

Layer contains sensory cells that communicate with the myenteric plexus and motor fibers that stimulate the secretion of fluids into the lumen.

Myenteric plexus -----

Layer contains the neurons responsible for regulating the enzyme output of adjacent organs.

Lumen No nerves actually enter this area, where digestion occurs. The brains in the head and gut have to monitor conditions in the lumen across the lining of the bowel.

Source: Dr. Michael D. Genshon, Columbia University

Mesentery

Attaches the bowel to the body wall and contains major arteries, veins, lymphatics and external nerves.

Vagus Nerve Innervation

1. Pharynx 2. Left Lung 3. Right Lung 4. Heart 5. Stomach 6. Lver 7. Splean 8. Pancreas 9. Föght Kidney 10. Small Intestine 11. Large Intestine

The Gut - Brain Relationship

Converging Scientific Discoveries

Enteric Neuroscience Neuroimaging Intestinal Microbiology Host Microbial Interactions Microbial Gut Brain Signaling

Enteric Neuroscience

"The study supports the idea that there could be a real biology of gut feelings...... as soon as food contacts the wall of the gut, the brain will know in real time what's going on in the gut"

> -Diego Bohórquez, Assistant Professor of medicine at Duke, Postdoctoral Researcher in the lab of Dr. Rodger Liddle, a professor of gastroenterology.

An image taken from 3-D electron microscopy reveals the structure of a **Neuropod** — a cell in the gut that senses nutrient levels and sends signals that govern appetite, but isn't a neuron.

Credit Diego Bohorquez, Duke University.

"Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells"

by Diego V. Bohórquez, Rafiq A. Shahid, Alan Erdmann, Alex M. Kreger, Yu Wang, Nicole Calakos, Fan Wang and Rodger A. Liddle in *Journal of Clinical Investigation*. Published online January 2 2015 doi:10.1172/JCI78361

- Several years ago, Liddle's team developed methods to visualize a type of cell found scattered throughout the lining of the mouse gut that is remarkably similar to a neuron. Although the cells have a normal shape on the gut's surface, their underside bears a long arm.
- Dubbed '<u>Neuropods</u>,' these special arms are nurtured by support cells known as glia that work with neurons, which suggested at the time that they could be involved in a neuronal circuit.

Meet the "Neuropod" "Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells"

"Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells" by Diego V. Bohórquez, Rafiq A. Shahid, Alan Erdmann, Alex M. Kreger, Yu Wang, Nicole Calakos, Fan Wang and Rodger A. Liddle In *Journal of Clinical Investigation*. Published online January 2 2015 doi:10.1172/JCI78361

Bidirectionality

The "Gut" Feeling

How our GI tract can influence the CNS

Scratching the Surface of the Microbiome

The main functional compartment of the small intestine. Most people are not aware that the intestine is the largest part of the body's immune system.

Seared at all Gue Paehogens 2013, 55 http://www.gut.sethogens.com/content/S/1/S

Open Access

Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances: Part I – autointoxication revisited

Alson C Bested¹, Alan C Logan^{2*} and Eva M Selhub³

Abstract

"Mental Health Disorders , depression in particular, have been prescribed as a global epidemic".

"Research suggest that a variety of lifestyle may be driving at least some portion of the increased prevalence".

"One area of flourishing research involves the relationship between the intestinal microbiota (as well as the related functional integrity of the gastrointestinal tract) and mental health".

ಖರತ್.

One area of flourishing research involves the neuro psychological consequences of alterations to gut microbiota (formerly referred to as "flora" or "microflora") in

Consepondence admission filling *County, 775 Birthedale Avenue, Suite 369, Nell Valley, CA Vefer, USA Full list of author information is available at the end of the attole nipulation could positively influence mental health at least within scientific writing, was inevitably linked to the early 20th century, to a time when some within medicine had weered off a rational course in a relatively short lived obsession with so called 'autointoxication' and 'intestinal toxemia' [7 11]. During this period the colon was viewed as the central road to a limitless array

 2015 Bioled stol; is enser BiolAnd Center Lid Theo on Open Access and in Adabated under the been of the Center Common Abstaction Learner (http://www.center.org/is.ense/by/20, which permissionerstands use, dointaction, and reproduction incory materias, provided the angent learner property cated

Élie Metchnikoff 1845 – 1916

- Mechnikov's work on phagocytes won him the Nobel Prize in 1908.
- Immunology (specialist is microbes)
- Credited by some sources with coining the term gerontology in 1903, for the emerging study of aging and longevity.
- Mechnikov also developed a theory that aging is caused by toxic bacteria in the gut and that lactic acid could prolong life. Based on this theory, he drank sour milk every day (Lactobacillus Bulgaricus)

ARTICLE IN PRESS

Bran, Bréaner, and Grennetty XXX (2009) XXX-XXX Contents lists available at ScienceDirect

Brain, Behavior, and Immunity

jo urnat homepage: www.elsevier.com/locate/ybrbi

Review

Mood and gut feelings

Paul Forsythe^{a,b}, Nobuyuli Sudo^c, Timothy Dinan^d, Valerie H. Taylor^e, John Bienenstock^{a,b,r}

" Mathatian Brain-Bady Instituting 🕮 Joseph & Healthcare, Hamilton, Oni., Canada

* Department of Medicine, McMeeter University, Horniton, Oni, Canada *Department of Psychocomotic Medicine, Candinic School of Medical Sciences, Kyushu University, Japan.

- Department of Psycholomotic Medicine, Graduate School of Medical Sciences, Nyushu University, Jap 4 Department of Psychiatry and Nementary Pharma basic Canter, University Califije Carls, Indoné
- Department of Psychology and Remanary Promocedule Count, Charlesby Cauge Can, master " Department of Psychiatry and Scharvard Heuroceanus, Markoster University, Horniton, Ont., Caudé

"GABA is made by many bacteria, especially Lactobacilli, and this property may well serve to protect the organism from the acid environment encountered in the stomach, since it synthesis involves proton exchange for the uptake of glutamate."

Higuchi et al.,1997

there is extensive epidemiological evidence to support the view that significant co-morbidity exists between many chronic medical and psychiatric diseases, especially mood disorders (Moussavi et al., 2007; Van Lieshout et al., 2008). The severity and prognosis of medical illness are substantially affected by the presence or ab sence of co-morbid depression. For example, depression is a significant rish factor for myocardial infanction (Rosengue et al., 2004) and its presence at the time of infanction predicts a greater than

their application to the study of the human genome have produced much evidence to support the genetic basis of a number of chronic diseases. However, the results are faught with difficulty of interpretation as well as the knowledge that most of these diseases are polygenic in origin. Indeed the solution to some of the comm due of causation of chronic diseases may lie in greater understand ing of the consequences of gene environment interactions (Cooper, 2003) As a result, the field of epigenetics is expanding explosively and is being applied to psychiatric disorders (Mill and Tetronis, 2007; faulious et al., 2007).

We believe that one of the most significant areas that need to be investigated in terms of potential environmental factors contribut ing to both mood disorders and chronic diseases is the external

Consequencing action: Address: Mathematics Reserving (athorize, 32. (step) fractioners, 50 Charleso Avenue Exit, 13304, Hamilton, Ook, Canada (2014A). Par: 13 (20 54) 6233.

^{- &}amp;-mail address : buts and \$m consister as (), 8 upper Starle).

Fermented Milk

- A UCLA study tested how fermented milk affected the brains of women. The women were split into three different groups: one that didn't receive probiotics, one that received non-fermented milk, and one that got fermented milk. Fermented milk can be a great source for probiotics, and some of the strains that are found in fermented milk include:
- Lactobacillus Bulgaricus
- Bifidobacterium Animalis
- Lactococcus Lactis
- Streptococcus Thermophiles
- Consumption of Fermented Milk Product With Probiotic Modulates Brain Activity
- The research showed that the group that received the fermented milk showed <u>better brain</u> <u>function by MRI analaysis.</u>

Kirsten Tillisch et al **Gastroenterology** Volume 144, Issue 7, Pages 1394-1401.e4, June 2013

Invisible Ink – "Inky"

Robert W. Copelan, DVM *Photo Credit: Anne M. Eberhardt/BloodHorse*

Thank You!

Elizabeth A. Stuller, MD ABPN Board Certified Adult and Addiction Psychiatry Fellow – American Psychiatric Association Fellow – American Society of Addiction Medicine

Stuller Resettings, LLC Catonsville, Maryland

stullerresettings@gmail.com